Das Leibniz-Institut zur Analyse des Biodiversitätswandels

ist ein Forschungsmuseum der Leibniz Gemeinschaft

Selecting optimal…

AutorInnen: 
Lanfear, R., Calcott, B., Kainer, D., Mayer, C. and Stamatakis, A.
Erscheinungsjahr: 
2014
Vollständiger Titel: 
Selecting optimal partitioning schemes for phylogenomic datasets
ZFMK-Autorinnen / ZFMK-Autoren: 
Publiziert in: 
BMC Biology
Publikationstyp: 
Zeitschriftenaufsatz
Keywords: 
Model selection; Partitioning; Partitionfinder; BIC; AICc; AIC; Phylogenetics; Phylogenomics; Clustering; Hierarchical clustering
Bibliographische Angaben: 
LANFEAR, R., CALCOTT, B., KAINER, D., MAYER, C. AND STAMATAKIS, A. (2014) Selecting optimal partitioning schemes for phylogenomic datasets, BMC evolutionary biology, 14(1), p. 82.
Abstract: 

Background

Partitioning involves estimating independent models of molecular evolution for different subsets of sites in a sequence alignment, and has been shown to improve phylogenetic inference. Current methods for estimating best-fit partitioning schemes, however, are only computationally feasible with datasets of fewer than 100 loci. This is a problem because datasets with thousands of loci are increasingly common in phylogenetics.

Methods

We develop two novel methods for estimating best-fit partitioning schemes on large phylogenomic datasets: strict and relaxed hierarchical clustering. These methods use information from the underlying data to cluster together similar subsets of sites in an alignment, and build on clustering approaches that have been proposed elsewhere.

Results

We compare the performance of our methods to each other, and to existing methods for selecting partitioning schemes. We demonstrate that while strict hierarchical clustering has the best computational efficiency on very large datasets, relaxed hierarchical clustering provides scalable efficiency and returns dramatically better partitioning schemes as assessed by common criteria such as AICc and BIC scores.

Conclusions

These two methods provide the best current approaches to inferring partitioning schemes for very large datasets. We provide free open-source implementations of the methods in the PartitionFinder software. We hope that the use of these methods will help to improve the inferences made from large phylogenomic datasets.

Ansprechpartnerin / Ansprechpartner

Sektionsleiter
Stellvertretender Datenschutzbeauftragter
+49 228 9122-403
c.mayer.zfmk [at] uni-bonn.de