Eines ihrer wichtigsten Ergebnisse war, dass viele pflanzenfressende Käferarten in ihr Genom Gene für Pflanzenzellwand-abbauende Enzyme von Pilzen und Bakterien integriert haben. Diese Fremd-DNA haben Käfer über einen sogenannten horizontalen Gentransfer in ihr eigenes Genom integrieren können, was ihnen eine von Symbionten unabhängige Verdauung von Holz und Blättern ermöglicht. Symbionten ermöglichen Käfern normalerweise die Verdauung. Die „gekaperte“ Fremd-DNA erlaubt eine effiziente Verdauung ohne Symbionten. Bemerkenswerter Weise geschah dies zweimal voneinander unabhängig. Insgesamt stellen die pflanzenfressenden Käfer mehr als die Hälfte aller existierenden Käfer dar. Deswegen sind die Autoren überzeugt, dass die zwei Ereignisse der Integration von DNA aus anderen Organismen zu den wichtigsten Faktoren gehören, welche die erfolgreiche Evolution der Käfer ermöglicht haben.
„Pflanzenzellwand-abbauende Enzyme waren die Schlüsselinnovation im Mesozoikum“ sagt Dr. Dirk Ahrens vom Forschungsmuseum Alexander Koenig. „Dies ermöglichte eine effiziente Verdauung verschiedener Pflanzengewebe, wodurch sich grundverschiedene Ernährungsweisen, wie Blattminierung oder Holzbohren herausbilden konnten.“
Die Analysen des Teams konnten außerdem bisher kontrovers diskutierte Verwandtschaftsbeziehungen klären und den Ursprung der Käfer in der Karbonzeit datieren. Die außerordentliche Vielfalt der Käfer resultierte jedoch aus einem Mix mehrerer Faktoren. Zu diesen gehörte unter anderem eine geringe Aussterberate der Entwicklungslinien über lange evolutive Zeiträume, die gemeinsame Diversifikation mit Blütenpflanzen sowie der Gentransfer von Mikroben-Genen und die darauffolgende explosionsartige Entstehung neuer Arten - eine sogenannte adaptive Radiation - pflanzenfressender Käfer.
Die Ergebnisse der Arbeit zeigen erneut eindrucksvoll die komplexen evolutiven Beziehungen von Insekten, Pflanzen und Mikroben, deren Erforschung gerade im Angesicht aktueller Herausforderungen (Biodiversitätsverlust) von extremer gesellschaftlicher Bedeutung erscheinen.
Quelle: The evolution and genomic basis of beetle diversity. Autoren:
Duane D. McKenna, Seunggwan Shin, Dirk Ahrens, Michael Balke, Cristian Bezaa, Dave J. Clarke, Alexander Donath, Hermes E. Escalona, Frank Friedrich, Harald Letsch, Shanlin Liu, David Maddison, Christoph Mayer, Bernhard Misof, Peyton J. Murin, Oliver Niehuis, Ralph S. Peters, Lars Podsiadlowski, Hans Pohl, Erin D. Scully, Evgeny V. Yan, Xin Zhou, Adam Slipinski and Rolf G. Beutel.
www.pnas.org/cgi/doi/10.1073/pnas.1909655116
Ansprechpartner: Dr. Dirk Ahrens
Abteilungsleiter Arthropoda
Sektionsleiter
Kurator
Coleoptera
Tel: +49 228 9122-286
Fax: +49 228 9122-212
Mail: d.ahrens [at] leibniz-zfmk.de
------------------
Die Leibniz-Gemeinschaft verbindet 95 selbständige Forschungseinrichtungen. Ihre Ausrichtung reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Raum- und Sozialwissenschaften bis zu den Geisteswissenschaften. Leibniz-Institute widmen sich gesellschaftlich, ökonomisch und ökologisch relevanten Fragen.
Sie betreiben erkenntnis- und anwendungsorientierte Forschung, auch in den übergreifenden Leibniz-Forschungsverbünden, sind oder unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an. Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer, vor allem mit den Leibniz-Forschungsmuseen. Sie berät und informiert Politik, Wissenschaft, Wirtschaft und Öffentlichkeit.
Leibniz-Einrichtungen pflegen enge Kooperationen mit den Hochschulen - u.a. in Form der Leibniz-WissenschaftsCampi, mit der Industrie und anderen Partnern im In- und Ausland. Sie unterliegen einem transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam. Die Leibniz-Institute beschäftigen rund 20.000 Personen, darunter 10.000 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei 2,1 Milliarden Euro.
www.leibniz-gemeinschaft.de