The findings show that flowering plants did drive much of these insects' diversity. In a surprise twist, however, multiple moth lineages evolved "ears" millions of years before the existence of bats, previously credited with triggering moths' development of hearing organs.Their findings show that flowering plants did drive much of these insects' diversity. In a surprise twist, however, multiple moth lineages evolved "ears" millions of years before the existence of bats, previously credited with triggering moths' development of hearing organs.Their findings show that flowering plants did drive much of these insects' diversity. In a surprise twist, however, multiple moth lineages evolved "ears" millions of years before the existence of bats, previously credited with triggering moths' development of hearing organs.
The development of the proboscis, a coiled straw-like mouthpart that can suck up nectar and other fluids, helped boost the diversity of Lepidoptera. Here, a tiger longwing, Heliconius hecale, drinks from a flower.The development of the proboscis, a coiled straw-like mouthpart that can suck up nectar and other fluids, helped boost the diversity of Lepidoptera. Here, a tiger longwing, Heliconius hecale, drinks from a flower.The development of the proboscis, a coiled straw-like mouthpart that can suck up nectar and other fluids, helped boost the diversity of Lepidoptera. Here, a tiger longwing, Heliconius hecale, drinks from a flower. Copyright: Eric Zamora/Florida Museum
Source:
Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths
Akito Y. Kawahara, David Plotkin, Marianne Espeland, Karen Meusemann, Emmanuel F. A. Toussaint, Alexander Donath, France Gimnich, Paul B. Frandsen, Andreas Zwick, Mario dos Reis, Jesse R. Barber, Ralph S. Peters, Shanlin Liu, Xin Zhou, Christoph Mayer, Lars Podsiadlowski, Caroline Storer, Jayne E. Yack, Bernhard Misof, Jesse W. Breinholt.
Proceedings of the National Academy of Sciences Oct 2019, 201907847; DOI: 10.1073/pnas.1907847116
Authors:
Akito Kawahara, Akito Kawahara, University of Florida associate professor and curator at the Florida Museum of Natural History's McGuire Center for Lepidoptera and Biodiversity, David Plotkin of the Florida Museum and the UF entomology and nematology department; Marianne Espeland of the Florida Museum and the Alexander Koenig Zoological Research Museum; Karen Meusemann of the University of Freiburg, the Alexander Koenig Zoological Research Museum and the Commonwealth Scientific and Industrial Research Organisation; Emmanuel Toussaint of the Florida Museum and the Natural History Museum of Geneva; Jesse Breinholt of the Florida Museum and RAPiD Genomics; Caroline Storer of the Florida Museum; Alexander Donath, France Gimnich, Ralph Peters, Christoph Mayer, Lars Podsiadlowski and Bernhard Misof of the Alexander Koenig Zoological Research Museum; Paul Frandsen of Brigham Young University and the Smithsonian Institution; Andreas Zwick of the Commonwealth Scientific and Industrial Research Organisation; Mario dos Reis of Queen Mary University of London; Shanlin Liu of China National GeneBank and China Agricultural University; and Xin Zhou of China Agricultural University.
The study was funded by the National Science Foundation, China National GeneBank, BGI and the German Research Foundation (DFG).
English version: https://www.eurekalert.org/pub_releases/2019-10/fmon-bap101619.php
Contact: Dr. Marianne Espeland
Curator Lepidoptera Forschungsmuseum Koenig
Tel: +49 228 9122-220
Fax: +49 228 9122-212
Mail: m.espeland [at] leibniz-zfmk.de