ZFMK - Zoological Research Museum Alexander Koenig
Published on ZFMK - Zoological Research Museum Alexander Koenig (https://bonn.leibniz-lib.de)

Home > ZFMK > About us > Staff > Dr. Eckart Stolle > Menu position router > Menu position router

  • News [1]
  • Press [2]
  • Events [3]
  • About us [4]
    • Procurement [5]
    • Job Offerings [6]
    • Staff [7]
      • Dr. Eckart Stolle [8]
    • Work at ZFMK [9]
    • Leibniz Institute [10]
    • Buildings [11]
    • History [12]
  • Support us [13]
  • Become a sponsor [14]
  • Contact [15]
  • next [16]
  • previous [17]

Dr. Eckart Stolle

Head of Section
Comparative Insect Genomics [18]
Tel: +49 228 9122-421
Fax: +49 228 9122-212
Mail: e.stolle [at] leibniz-zfmk.de
ZFMK [19] › About us [4] › Staff [7] › Dr. Eckart Stolle
Printer-friendly version [20]Send by email [21]

Tabs

Profile

Field of work

Insect comparative genomics

Steering committee DFG SPP 2349 (GEvol [22])

NEWS:

  • 11.04.2022: our ant supergene introgression paper got published by Nature Communications
    Recurring adaptive introgression of a supergene variant that determines social organization. [23] (Stolle E, Pracana R, et al., Wurm Y). Nature Communications 13: 1180. Altmetric [24]
  • JAN 2022: paper submitted , preprint posted for a collaboration on bee venoms
    Bee core venom genes predominantly originated before aculeate stingers evolved. [25] (Koludarov I, et al., Stolle E, von Reumont BM). bioRxiv doi: https://doi.org/10.1101/2022.01.21.477203 [26] , submitted
  • Dec 2021 paper accepted in Science Advances on the origin of the honeybee
    Thrice out of Asia and the adaptive radiation of the western honey bee [27]
    Dogantzis K, et al., Stolle E, et al., Zayed A). Science Advances 7 (49) DOI: 10.1126/sciadv.abj2151
    Altmetric Impact Score: 216 [28]

Research interests

GoogleScholar [29] | GitHub [30] | ORCID 0000-0001-7638-4061 [31]
ResearchGate [32] | FigShare [33] | ResearcherID G-3780-2011 [34]/Publons [35]
member of the steering committee of the DFG Priority Programme “Genomic Basis of Evolutionary Innovations (GEvol)” (SPP 2349).
Associated member of DFG research unit So-Long (FOR2281/2) between Freiburg, Mainz, Münster, Regensburg, Halle, Frankfurt, Groningen and Friborg.

I am interested in understanding evolutionary processes shaping genomes and chromosomes leading to phenotypic innovation and hence biodiversity. In particular I focus on bees and wasps, including social species. For my research, I’m combining aspects of biodiversity, phylogenetics, population genetics, molecular ecology and genetics with state-of-the-art genomics and bioinformatics approaches, including third generation sequencing, optical and genetic mapping.

Memberships

International Union for the Study of Social Insects (IUSSI), Society for Molecular Biology and Evolution (SMBE), Entomologenvereinigung Sachsen-Anhalt (EVSA)

Awards

2019 SMBE Young Investigator Award, 2019 EASI Genomics grant, 2015-2017 Marie-Curie Intra European Fellowship, 2020 DFG grant (sequencing in projects, 2021 EASI Genomics Grant, 2020 DFG standard grant

Further information

thanks to our funders: DAAD, DFG, Marie-Curie-Actions, EASI-Genomics, Erasmus, CAPES (Brazil), Studienstiftung des deutschen Volkes, and the German and European Tax Payers!

External websites and profiles

https://twitter.com/EckartStolle [36]
Projects

Projekte

  • Improvement of the Bombus terrestris genome assembly and annotation (funded by EASY Genomics, 1st call)
  • Corbicula Development and Evolution in Bees (funded by EASY Genomics, 3rd call)
  • Phenotypic Evolution in Bumblebees (funded by DFG, sequencing in projects call)
  • Long-term genomic consequences of parthenogenesis (funded by DFG)
  • stingless bee genome evolution, synteny, gene cluster evolution, mutation rate, recombination rate
  • stingless bee caste determination and phenotypic evolution
  • pollinator genomics
  • genomic basis of recurrent phenotypic loss in bees
  • genomics of dietary specialization in bees and flies

2022

[37]

phenotypic loss in bees - the evolution of cleptoparasitism [37]

phenotypic loss in bees - the evolution of cleptoparasitism
Unit:
Comparative Insect Genomics [18], Morphology Laboratory [38]
Project lead:
Dr. Eckart Stolle [8]
[39]

DeRGA - Deutscher ReferenzGenom Atlas [39]

German hub of the European Reference Genome AtlasBuilding up to the mission of the international ERGA, the German biodiversity genomics community aims at generating high-quality reference genomes of the German eukaryotic biodiversity:
Unit:
Comparative Vertebrate Genomics [40], Computational Genomics [41], High-performance Computing [42], Comparative Insect Genomics [18], Lepidoptera [43]
Project lead:
Astrid Böhne [44]
[45]

phenotypic loss - the evolution of stingless bees [45]

phenotypic loss - the evolution of stingless bees
Unit:
Comparative Insect Genomics [18]
Project lead:
Dr. Eckart Stolle [8]
[46]

ERGA - The European Referen... [46]

The European Reference Genome Atlas (ERGA) initiative is a pan-European scientific response to current threats to biodiversity. Reference genomes provide the most complete insight into the genetic basis that forms each species and represent a powerful resource in understanding how biodiversity functions. ERGA aims to sequence the genomes of all European species and will for this establish an interdisciplinary workflow.
Unit:
Comparative Vertebrate Genomics [40], Lepidoptera [43], Diptera [47], Comparative Insect Genomics [18], Biobank [48]
Project lead:
Astrid Böhne [44]
Funding:
European Union

2021

[49]

CORBICULA [49]

Humandkind's most important insect leg
Unit:
Comparative Insect Genomics [18]
Project lead:
Dr. Eckart Stolle [8]
Funding:
European Union
[50]

thelytoky in honeybees [50]

Genomische Langzeitkonsequenzen thelytoker VermehrungVerluste von HeterozygotieAssociative ÜberdominanzGenomische Regulation von Thelytokie in Honigbienen
Unit:
Comparative Insect Genomics [18]
Project lead:
Dr. Eckart Stolle [8]
Funding:
Deutsche Forschungsgemeinschaft
[51]

Bumblebee Phenotypic Evolution [51]

Bumblebee Phenotypic Evolution - We will study phenotypic evolution in bumblebees, repeatability of evolution and evolutionary constraints using genomics and transcriptomics.
Unit:
Comparative Insect Genomics [18]
Project lead:
Dr. Eckart Stolle [8]
Funding:
Deutsche Forschungsgemeinschaft

2019

[52]

Bombus terrestris genome [52]

Using long read sequencing of DNA and RNA we will improve the genome sequence assembly and annotation of the bufftailed bumblebee Bombus terrestris.
Unit:
Comparative Insect Genomics [18]
Project lead:
Dr. Eckart Stolle [8]
Funding:
European Union

2017

[53]

GGBC: Assessment, Monitoring and Management of Caucasian Biodiversity [53]

A Georgian-German initiative to explore and barcode the biodiversity of the Caucasus area
Unit:
Directorate [54], Chair Systematic Zoology [55], Biobank [48], Department Arthropoda [56], Coleoptera [57], Mammalogy [58], Lepidoptera [43], Herpetology [59], Administration [60], ZFMK International Graduate School [61], Biodiversity Informatics [62], Metabarcoding [63], Myriapoda [64], Arachnids [65], Staff Council [66], Diptera [47], Hymenoptera [67], Comparative Insect Genomics [18]
Project lead:
Prof. Dr. Bernhard Misof [68]
Funding:
Federal Ministry of Education and Research

External projects

  • recombination rate evolution in bees (U Utah, USA, Uppsala U, Sweden)
  • stingless bee synteny and genome evolution (U Purdue, USA; Maringá U, Sao Paulo U, Bahia U, Fortaleza U, Brazil, UADY, Merida, Mexico)
  • origin and evolution of the fire ant social chromosome (QMUL, UK, U Buenos Aires, Arg, U Sao Paulo, Brasil, U Montevideo, Uruguay)
  • bumblebee genomics and population genetics (U Maynooth, Ireland, U Mainz)
  • hoverfly genomics and phenotypic evolution (ZFMK)
  • ageing and fecundity in orchid bees, stingless bees and other bees (DFG Forschergruppe So-Long) (U Halle, U Münster)
  • deformed wing virus and black queen cell virus in non-native hosts (U Halle)
  • Universal Single Copy Orthologs (USCOs) as tool for multi-locus barcoding, species delimitation and phylogeny (ZFMK, Germany)
Publications

Publications (peer-reviewed, international)

see also [Google Scholar] [29]

  1. Bee core venom genes predominantly originated before aculeate stingers evolved [25]
    Koludarov I, Velasque M, Timm T, Lochnit G, Heinzinger M, Vilcinskas A, Gloag R, Harpur BA, Podsiadlowski L, Rost B, Dutertre S, Stolle E, von Reumont BM
    2022, bioRxiv, doi: https://doi.org/10.1101/2022.01.21.477203 [26] , submitted
  2. Recurring adaptive introgression of a supergene variant that determines social organization [23]
    Stolle E, Pracana R, Priebe MK, Hernández GL, Castillo-Carrillo C, Arias MC, Paris CI, Bollazzi M, Priyam A, López-Osorio F, Wurm Y
    2022, Nature Comminications 13: 1180 (2022)
  3. Thrice out of Asia and the adaptive radiation of the western honey bee [69]
    Dogantzis KA, Tiwari T, Conflitti IM, Dey A, Patch HM, Muli EM, Garnery L, Whitfield CW, Stolle E, Alqarni AS, Allsopp MH, Zayed A
    2021, Science Advances 7(49) eabj2151
  4. Parameter exploration improves the accuracy of long-read genome assembly [70]
    Priyam A, Witwicka A, Brahma A, Stolle E, Wurm Y
    2021, bioRxiv, doi: https://doi.org/10.1101/2021.05.28.446135 [71]
  5. Transcriptomic signatures of ageing vary in solitary and social forms of an orchid bee [72]
    Séguret AC, Stolle E*, Fleites-Ayil, FA, Quezada-Euán JJG, Hartfelder K, Meusemann K, Harrison M, Soro A, Paxton RJ*
    2021, Genome Biology and Evolution 13(6), [73]bioRxiv 2020 [74]
  6. Developmental plasticity shapes social traits and selection in a facultatively eusocial bee [75]
    Kapheim K, Jones BM, Pan H, Li C, Harpur BA, Kent, C, Zayed A, Ioannidis P, Waterhouse RM, Kingwell C, Stolle E, Avalos A, Zhang G, McMillan WO, Wcislo WT
    2020, PNAS, 117 (24): 13615-13625
  7. Genomic architecture and evolutionary antagonism drive allelic expression bias in the social supergene of red fire ants [76]
    Martinez-Ruiz C, Pracana R, Stolle E, Paris CI, Nichols R, Wurm Y
    2020, eLife 2020 (9): e55862, (BioRxiv, 2020 [77])
  8. Brain microRNAs among social and solitary bees [78]
    Kapheim K, Jones BM, Søvik E, Stolle E, Waterhouse RM, Bloch G, Ben-Shahar Y
    2020, Royal Society Open Science 7: 200517, (bioRxiv [79])
  9. Caste- and pesticide-specific effects of neonicotinoid pesticide exposure on gene expression in bumblebees [80]
    Colgan T, Fletcher I, Arce A, Gill R, Ramos Rodrigues A, Stolle E, Chittka L, Wurm Y
    2019, Molecular Ecology, 28(8):1964–1974
  10. A single SNP turns a social honey bee (Apis mellifera) worker into a selfish parasite [81]
    Aumer D°, Stolle E°*,Allsopp M, Mumoki F, Pirk CWW, Moritz RFA*
    2019, Molecular Biology and Evolution, 36(3): 516–526
  11. Degenerative expansion of a young supergene [82]
    Stolle E°, Pracana R°, Howard P, Paris CI, Brown SJ, Castillo-Carrillo CA, Rossitter SJ, Y Wurm°
    2019, Molecular Biology and Evolution, 36 (3): 553–561, (bioRxiv 2018 [83])
  12. Draft genome assembly and population genetics of an agricultural pollinator, the solitary alkali bee (Halictidae: Nomia melanderi) [84]
    Kapheim KM, Pan H, Li C, Blatti C, Harpur BA, Ioannidis P, Jones BM, Kent CF, Ruzzante L, Sloofman L, Stolle E, Waterhouse RM, Zayed A, Zhang G, Wcislo WT
    2019, G3, 9(3): 625–634, (bioRxiv 2018 [85])
  13. Fire ant social chromosomes: Differences in number, sequence and expression of odorant binding proteins [86]
    Pracana R*, Levantis I*, Martinez-Ruiz C, Stolle E, Priyam A, Y Wurm°
    2017, Evolution Letters 1-4: 199–210
  14. Microsatellite analysis supports the existence of three cryptic species within the bumble bee Bombus lucorum sensu lato [87]
    McKendrick L°, Provan J, Fitzpatrick U, Brown MJF, Murray TE, Stolle E, Paxton RJ
    2017, Conservation Genetics 18(3): 573–584
  15. Social evolution. Genomic signatures of evolutionary transitions from solitary to group living [88]
    Kapheim KM*°, Pan H*,..., Stolle E,..., Robinson GE, Zhang G
    2015, Science 348(6239): 1139-1143
  16. The genomes of two key bumblebee species with primitive eusocial organization [89]
    Sadd BM°,..., Stolle E,..., Schmid-Hempel P, Worley K°
    2015, Genome Biology 16:76
  17. The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima [90]
    Chipman AD,..., Stolle E,..., Richards S°
    2014, PLoS Biology 12(11): e1002005
  18. Finding the missing honey bee genes: lessons learned from a genome upgrade [91]
    Elsik CG°, Worley K°,..., Stolle E,..., Gibbs R
    2014, BMC Genomics 15:86
  19. RESTseq – Efficient Benchtop Population Genomics with RESTriction fragment SEQuencing [92]
    Stolle E°, Moritz RFA
    2013, PLoS ONE 8(5): e63960
  20. Patterns of Evolutionary Conservation of Microsatellites (SSRs) Suggest a Faster Rate of Genome Evolution in Hymenoptera Than in Diptera [93]
    Stolle E°, Kidner JH, Moritz RFA
    2013, Genome Biology and Evolution 5(1): 151–162
  21. Alternative splicing of a single transcription factor drives selfish reproductive behavior in honeybee workers (Apis mellifera) [94]
    Jarosch A°, Stolle E, Crewe RM, Moritz RFA
    2011, PNAS 108(37): 15282-15287
  22. A second generation genetic map of the bumblebee Bombus terrestris (Linnaeus, 1758) reveals slow genome and chromosome evolution in the Apidae [95]
    Stolle E°, Wilfert L, Schmid-Hempel R, Schmid-Hempel P, Kube M, Reinhardt R, Moritz RFA
    2011, BMC Genomics 15:86
  23. Estimating the Density of Honeybee Colonies across Their Natural Range to Fill the Gap in Pollinator Decline Censuses [96]
    Jaffé R°, Dietemann V, Allsopp MH, Costa C, Crewe RM, Dall’Olio R, de la Rúa P, El-Niweiri MAA, Fries I, Kezic N, Meusel MS, Paxton RJ, Shaibi T, Stolle E, Moritz RFA
    2010, Conservation Biology 24(2):583-593
  24. Novel microsatellite DNA loci for Bombus terrestris (Linnaeus, 1758) [97]
    Stolle E°,Rohde M, Vautrin D, Solignac M, Schmid-Hempel R, Schmid-Hempel P, Moritz RFA
    2009, Molecular Ecology Resources 9(5): 1345-1352
  25. Flower visitors in a natural population of Arabidopsis thaliana [98]
    Hoffmann MH°, Bremer M, Schneider K, Burger F, Stolle E, Moritz G
    2003, Plant Biology 5(5): 491-494
Format: 2022

2022

Stolle, Eckart; Pracana, Rodrigo; López-Osorio, Federico; Priebe, Marian K.; Hernández, Gabriel Luis; Castillo-Carrillo, Claudia; Arias, Maria Cristina; Paris, Carolina Ivon; Bollazzi, Martin; Priyam, Anurag; Wurm, Yannick. Recurring adaptive introgression of a supergene variant that determines social organization. Nature Communications 13: 1180 (2022)
[more] [99]

2021

Dogantzis, KA; Tiwari, T; Conflitti, IM; Dey, A; Patch, HM,;Muli, EM; Garnery, L; Whitfield, CW; Stolle, E; Alqarni, AS; Allsopp, MH; Zayed, A. Thrice out of Asia and the adaptive radiation of the western honey bee. Science Advances 7 (49)
[more] [100]
Séguret, A. C., Stolle, E., Fleites-Ayil, F. A., Quezada-Euán, J. J. G., Hartfelder, K., Meusemann, K., Harrison, M., et al. (2021): Transcriptomic signatures of ageing vary in solitary and social forms of an orchid bee. - Genome Biology and Evolution 13 (6): evab075. https://doi.org/10.1093/gbe/evab075.
[more] [101]
Links:
https://doi.org/10.1093/gbe/evab075 [102]

2020

Kapheim, K., Jones, B. M., Pan, H., Li, C., Harpur, B. A., Kent, C., Zayed, A., Ioannidis, P., Waterhouse, R. M., Kingwell, C., Stolle, E., Avalos, A., Zhang, G., McMillan, W. O., Wcislo, W. T. (2020): Developmental plasticity shapes social traits and selection in a facultatively eusocial bee. PNAS 117 (24): 13615-13625
[more] [103]
Kapheim, K., Jones, B. M., Søvik, E., Stolle, E., Waterhouse, R. M., Bloch, G., Ben-Shahar, Y. (2020): Brain microRNAs among social and solitary bees. Royal Society Open Science 7 (7): 200517
[more] [104]
Martinez-Ruiz, C., Pracana, R., Stolle, E., Paris, C. I., Nichols, R., Wurm, Y. (2020): Genomic architecture and evolutionary antagonism drive allelic expression bias in the social supergene of red fire ants. eLife 2020 (9): e55862
[more] [105]
Saure, C., Dziock, F., Jentzsch, M., Stolle, E. (2020): Rote Listen Sachsen-Anhalt: Schwebfliegen (Diptera: Syrphidae). Berichte des Landesamtes für Umweltschutz Sachsen-Anhalt 1: 895–905.
[more] [106]
Saure, C., Stolle, E. (2020): Rote Listen Sachsen-Anhalt: Stechwespen (Hymenoptera: Aculeata). Berichte des Landesamtes für Umweltschutz Sachsen-Anhalt 1: 791-806.
[more] [107]
Séguret A. C., Stolle E., Fleites-Ayil, F. A., Quezada-Euán J. J. G., Hartfelder K., Meusemann K., Harrison M., Soro A., Paxton R. J. (2020): Transcriptomic signatures of ageing vary in solitary and social forms of an orchid bee. bioRxiv, doi: https://doi.org/10.1101/2020.07.30.228304. (in revision)
[more] [108]

2019

Aumer, D., Stolle, E.,Allsopp, M., Mumoki, F., Pirk, C. W. W., Moritz, R. F. A. (2019): A single SNP turns a social honey bee (Apis mellifera) worker into a selfish parasite. Molecular Biology and Evolution, 36(3): 516–526.
[more] [109]
Colgan, T., Fletcher, I., Arce, A., Gill, R., Ramos Rodrigues, A., Stolle, E., Chittka, L., Wurm, Y. (2019): Caste- and pesticide-specific effects of neonicotinoid pesticide exposure on gene expression in bumblebees. Molecular Ecology, 28(8): 1964–1974.
[more] [110]
Kapheim, K. M., Pan, H., Li, C., Blatti, C., Harpur, B. A., Ioannidis, P., Jones, B. M., Kent, C. F., Ruzzante, L., Sloofman, L., Stolle, E., Waterhouse, R. M., Zayed, A., Zhang, G., Wcislo, W. T. (2019): Draft genome assembly and population genetics of an agricultural pollinator, the solitary alkali bee (Halictidae: Nomia melanderi). G3, 9(3): 625–634.
[more] [111]
Stolle, E., Pracana, R., Howard, P., Paris, C. I., Brown, S. J., Castillo-Carrillo, C. A., Rossitter, S. J., Wurm, Y. (2019): Degenerative expansion of a young supergene. Molecular Biology and Evolution, 36 (3): 553–561.
[more] [112]
CV

2019- Group leader / Head of Section, ZFMK, Germany
2017-2019 Assistant Professor, MLU Halle, Germany
2017 Lecturer, QMUL, UK
2015-2017 PostDoc (Marie Curie IEF), QMUL, UK
2014-2015 PostDoc (DAAD funded), QMUL UK
2014 visiting professor/scientist at Buenos AIres U, Sao Paulo U
2011-2014 Scientist, Assistant, BioSolution GmbH, Halle
2006-2013 PhD, MLU Halle
2001-2006 Diploma (Biology): MLU Halle

Staff search

Please enter a name
Please choose a staff list

Source URL:https://bonn.leibniz-lib.de/en/zfmk/eckart-stolle

Links
[1] https://bonn.leibniz-lib.de/en/zfmk/news [2] https://bonn.leibniz-lib.de/en/zfmk/press [3] https://bonn.leibniz-lib.de/en/zfmk/events [4] https://bonn.leibniz-lib.de/en/zfmk/about-us [5] https://bonn.leibniz-lib.de/en/zfmk/procurement [6] https://bonn.leibniz-lib.de/en/job-portal [7] https://bonn.leibniz-lib.de/en/zfmk/staff [8] https://bonn.leibniz-lib.de/en/zfmk/eckart-stolle [9] https://bonn.leibniz-lib.de/en/zfmk/about-us/work-at-zfmk [10] https://bonn.leibniz-lib.de/en/zfmk/about-us/leibniz-institute [11] https://bonn.leibniz-lib.de/en/zfmk/about-us/buildings [12] https://bonn.leibniz-lib.de/en/zfmk/history [13] https://bonn.leibniz-lib.de/en/zfmk/support-us [14] https://bonn.leibniz-lib.de/en/zfmk/become-a-sponsor [15] https://bonn.leibniz-lib.de/en/zfmk/contact [16] https://bonn.leibniz-lib.de/en/zfmk/hendrik-stork [17] https://bonn.leibniz-lib.de/en/zfmk/darius-stiels [18] https://bonn.leibniz-lib.de/en/taxonomy/term/1699 [19] https://bonn.leibniz-lib.de/en/zfmk [20] https://bonn.leibniz-lib.de/en/print/15187 [21] https://bonn.leibniz-lib.de/en/printmail/node/15187 [22] http://www.g-evol.com/ [23] https://www.nature.com/articles/s41467-022-28806-7 [24] https://www.nature.com/articles/s41467-022-28806-7/metrics [25] https://www.biorxiv.org/content/10.1101/2022.01.21.477203v1 [26] https://doi.org/10.1101/2022.01.21.477203 [27] https://www.science.org/doi/10.1126/sciadv.abj2151 [28] https://scienceadvances.altmetric.com/details/118050224 [29] http://scholar.google.com/citations?hl=de&user=p9qDNAYAAAAJ&view_op=list_works&pagesize=100 [30] http://github.com/estolle [31] http://orcid.org/0000-0001-7638-4061 [32] https://www.researchgate.net/profile/Eckart_Stolle/ [33] http://figshare.com/authors/Eckart_Stolle/470156 [34] http://www.researcherid.com/rid/G-3780-2011 [35] https://publons.com/researcher/491512/eckart-stolle/metrics/ [36] https://twitter.com/EckartStolle [37] https://bonn.leibniz-lib.de/en/research/projects/phenotypic-loss-in-bees-the-evolution-of-cleptoparasitism [38] https://bonn.leibniz-lib.de/en/taxonomy/term/1109 [39] https://bonn.leibniz-lib.de/en/research/projects/derga-deutscher-referenzgenom-atlas [40] https://bonn.leibniz-lib.de/en/taxonomy/term/52 [41] https://bonn.leibniz-lib.de/en/taxonomy/term/386 [42] https://bonn.leibniz-lib.de/en/taxonomy/term/390 [43] https://bonn.leibniz-lib.de/en/taxonomy/term/55 [44] https://bonn.leibniz-lib.de/en/zfmk/astrid-bohne [45] https://bonn.leibniz-lib.de/en/research/projects/phenotypic-loss-the-evolution-of-stingless-bees [46] https://bonn.leibniz-lib.de/en/research/projects/erga-the-european-referen [47] https://bonn.leibniz-lib.de/en/taxonomy/term/53 [48] https://bonn.leibniz-lib.de/en/taxonomy/term/63 [49] https://bonn.leibniz-lib.de/en/research/projects/corbicula [50] https://bonn.leibniz-lib.de/en/research/projects/thelytoky-in-honeybees [51] https://bonn.leibniz-lib.de/en/research/projects/bumblebee-phenotypic-evolution [52] https://bonn.leibniz-lib.de/en/research/projects/bombus-terrestris-genome [53] https://bonn.leibniz-lib.de/en/research/projects/ggbc-assessment-monitoring-and-management-of-caucasian-biodiversity [54] https://bonn.leibniz-lib.de/en/taxonomy/term/326 [55] https://bonn.leibniz-lib.de/en/taxonomy/term/391 [56] https://bonn.leibniz-lib.de/en/taxonomy/term/45 [57] https://bonn.leibniz-lib.de/en/taxonomy/term/58 [58] https://bonn.leibniz-lib.de/en/taxonomy/term/48 [59] https://bonn.leibniz-lib.de/en/taxonomy/term/56 [60] https://bonn.leibniz-lib.de/en/taxonomy/term/375 [61] https://bonn.leibniz-lib.de/en/taxonomy/term/1171 [62] https://bonn.leibniz-lib.de/en/taxonomy/term/260 [63] https://bonn.leibniz-lib.de/en/taxonomy/term/370 [64] https://bonn.leibniz-lib.de/en/taxonomy/term/59 [65] https://bonn.leibniz-lib.de/en/taxonomy/term/50 [66] https://bonn.leibniz-lib.de/en/taxonomy/term/657 [67] https://bonn.leibniz-lib.de/en/taxonomy/term/54 [68] https://bonn.leibniz-lib.de/en/zfmk/bernhard-misof [69] https://www.science.org/doi/abs/10.1126/sciadv.abj2151 [70] https://www.biorxiv.org/content/10.1101/2021.05.28.446135v1 [71] https://doi.org/10.1101/2021.05.28.446135 [72] https://academic.oup.com/gbe/advance-article/doi/10.1093/gbe/evab075/6259147 [73] https://academic.oup.com/gbe/article/13/6/evab075/6259147 [74] https://www.biorxiv.org/content/10.1101/2020.07.30.228304v1.full [75] https://doi.org/10.1073/pnas.2000344117 [76] https://elifesciences.org/articles/55862 [77] https://www.biorxiv.org/content/10.1101/2020.02.28.969998v1 [78] https://royalsocietypublishing.org/doi/10.1098/rsos.200517 [79] https://www.biorxiv.org/content/10.1101/730317v4 [80] https://onlinelibrary.wiley.com/doi/10.1111/mec.15047 [81] https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msy232/5232789 [82] https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msy236/5255879 [83] https://www.biorxiv.org/content/early/2018/05/20/326645 [84] http://www.g3journal.org/content/early/2019/01/14/g3.118.200865 [85] https://www.biorxiv.org/content/early/2018/11/07/465351 [86] http://dx.doi.org/10.1002/evl3.22 [87] https://link.springer.com/article/10.1007/s10592-017-0965-3 [88] http://science.sciencemag.org/content/348/6239/1139.long [89] https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0623-3 [90] http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002005 [91] https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-15-86 [92] http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0063960 [93] https://academic.oup.com/gbe/article/5/1/151/731292 [94] http://www.pnas.org/content/108/37/15282.full [95] https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-12-48 [96] http://onlinelibrary.wiley.com/doi/10.1111/j.1523-1739.2009.01331.x/abstract [97] http://onlinelibrary.wiley.com/doi/10.1111/j.1755-0998.2009.02610.x/abstract [98] http://onlinelibrary.wiley.com/doi/10.1055/s-2003-44784/abstract [99] https://bonn.leibniz-lib.de/en/node/18789 [100] https://bonn.leibniz-lib.de/en/node/18565 [101] https://bonn.leibniz-lib.de/en/node/18567 [102] https://doi.org/10.1093/gbe/evab075 [103] https://bonn.leibniz-lib.de/en/node/16783 [104] https://bonn.leibniz-lib.de/en/node/16789 [105] https://bonn.leibniz-lib.de/en/node/16785 [106] https://bonn.leibniz-lib.de/en/node/16799 [107] https://bonn.leibniz-lib.de/en/node/16797 [108] https://bonn.leibniz-lib.de/en/node/16781 [109] https://bonn.leibniz-lib.de/en/node/16791 [110] https://bonn.leibniz-lib.de/en/node/16795 [111] https://bonn.leibniz-lib.de/en/node/16787 [112] https://bonn.leibniz-lib.de/en/node/16793