PhyQuart-A new algorithm to avoid systematic bias & phylogenetic incongruence

Are directed quartets the key for more reliable supertrees?

Patrick Kück

Department of Life Science, Vertebrates Division, The Natural History Museum London

Bioinformatics 2016

Systematic errors in phylogenetics

- Increasingly apparent as more data are analysed
- Yielding maximally support of incorrect relationships
- Long-branch attraction (LBA) as a major source

Terminal nodes can consist of...

- ... single taxa
- ... multiple taxa clades

Maximum Likelihood Success (PhyML)

• GTR; α: 0.3, 0.5, 0.7, 1.0, 2.0; Ι: 0.3; L: 250.000bp

• 4 rate categories instead of continuous rate distribution for ML

Maximum Likelihood Success (PhyML)

- ML Reliability further reduced by...
 - ... alignment errors
 - ... stochastic sampling errors
 - ... stronger model misspecifications

Is it possible to develop alternative techniques that are less effected by extreme branch length asymmetries?

Is it possible to develop alternative techniques that are less effected by extreme branch length asymmetries?

- Modern probabilistic substitution models assume time-reversibility
- Distinction between new (apomorphic) and old (plesiomorphic) homologies

Is it possible to develop alternative techniques that are less effected by extreme branch length asymmetries?

- Modern probabilistic substitution models assume time-reversibility
- Distinction between new (apomorphic) and old (plesiomorphic) homologies

PhyQuart

- Quartet based algorithm
- Consideration of 2 different directions of character alteration along the internal branch
- Allows discernibility between old and new character split-supporting site patterns and ...
- $\bullet\ \dots$ ML estimation of the expected number of convergent split support
- Combination of Hennigian logic and ML estimation represents a completely new strategy for the evaluation of sequence data

3 Possible Quartet Trees for a Set of 4 Taxa

• 15 different split pattern

3 Tree Supporting Split-Pattern T1 X X X Z X Z X Y X X T2 X Y Y X Y Z X Y Y X X T3 Y X Y X Y Y X Y X Y X X T4 Y Y X Y X Y X Y X Y X Y Symmetric Directive Asymmetric

- N_{ap} : Potentially phylogenetic informative split-pattern signal
- N_{tot} : Total number of tree supporting split-pattern (alignment observed)

Singelton

1 Uninformative, Old Split-Pattern per Tree Direction

- N_{ap} : Potentially phylogenetic informative split-pattern signal
- N_{tot} : Total number of tree supporting split-pattern (alignment observed)
- N_p : Plesiomorphic character similarity, uninformative (alignment observed)

2 Possibly Convergent Evolved Split-Pattern per Tree Direction

- N_{ap} : Potentially phylogenetic informative split-pattern signal
- N_{tot} : Total number of tree supporting split-pattern (alignment observed)
- N_p : Plesiomorphic character similarity, uninformative (alignment observed)
- N_c : Convergently evolved, uninformative (ML expected mean)

Reduction of Support Underestimation

- Multiple hits may erode the support for the correct tree
- Correction of support values
- Frequency of singelton pattern as indicator for terminal branch lengths

Reduction of Support Underestimation

Correction factor (CF):

- $CF = (N_{Sing_Smallest} * 4) / N_{Sing_Total}$
- Corrected support values closer to what would be expected if external branches were of equal length

Reduction of Support Underestimation

Correction factor (CF):

- $CF = (N_{Sing_Smallest} * 4) / N_{Sing_Total}$
- Corrected support values closer to what would be expected if external branches were of equal length
- 2 correction factors: CF_{obs} (Alignment) & CF_{exp} (ML)

Final Scoring

PhyQuart Score:

- For each quartet tree it's the highest of the scores for it's polarised quartets
- $\bullet\,$ Normalised so that the scores of all three alternative trees sum to $1\,$
- PhyQuart results imply both info about support scores & root info

Final Scoring

PhyQuart Score:

- For each quartet tree it's the highest of the scores for it's polarised quartets
- Normalised so that the scores of all three alternative trees sum to 1
- PhyQuart results imply both info about support scores & root info
- PhyQuart score network-graph

PhyQuart - Performance in Identifying Correct Quartets

PhyQuart Success

- GTR; α: 0.3, 0.5, 0.7, 1.0, 2.0; I: 0.3; L: 250.000bp
- 4 rate categories instead of continuous rate distribution for ML estimation

PhyQuart - Performance in Identifying Correct Quartets

PhyQuart Success

PhyQuart ...

- ... is quite successful in inferring correct quartet topologies from very heterogeneous sequence data
- \bullet . . . can outperform ML in both overcoming of long-branch attraction & repulsion
- ... not recommended for shorter sequence lengths (<50 kbp)

Implementation of PhyQuart

PENGUIN

Manual

- Command line driven Perl script
- Runs on Windows, Mac OS, and Linux
- Extensive user options available
- Download Link: https://github.com/PatrickKueck/Penguin

Analysis of. . .

- ... all quartets of larger trees
- ... predefined quartets of multitaxon clans

Analysis of. . .

- ... all quartets of larger trees
- ... predefined quartets of multitaxon clans Evaluation of...
 - ... contradicting signals to assess the robustness of relationships within a more complex tree

Analysis of. . .

- ... all quartets of larger trees
- ... predefined quartets of multitaxon clans Evaluation of...
 - ... contradicting signals to assess the robustness of relationships within a more complex tree

Identification of. . .

• ... of potentially rogue taxa

Analysis of. . .

- ... all quartets of larger trees
- ... predefined quartets of multitaxon clans Evaluation of...
 - ... contradicting signals to assess the robustness of relationships within a more complex tree

Identification of. . .

• ... of potentially rogue taxa

Used...

- ... in combination with quartet-based supertree methods
- ... for network development

PhyQuart - Publication

Submitted to Journal of Theoretical Biology

Can quartet analyses combining maximum likelihood estimation and Hennigian logic overcome long branch attraction in phylogenomic sequence data?

Patrick Kück^{*1}, Mark Wilkinson¹, Christian Groß², Peter G. Foster¹ and Johann Wolfgang Wägele³

¹ The Natural History Museum, London, SW7 5BD, United Kingdom, ²Pattern Recognition & Bioinformatics Group, Delft University of Technology, Delft, 2628 CD, The Netherlanda, ³Directorate, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, 53113, Cernany

Thank you for your attention.

