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Abstract
The quantification of realized niche overlap and the integration of species distribution mod-

els (SDMs) with calibrated phylogenies to study niche evolution are becoming not only pow-

erful tools to understand speciation events, but can also be used as proxies regarding the

delimitation of cryptic species. We applied these techniques in order to unravel how the fun-

damental niche evolved during cladogenesis within the Tarentola mauritanica species-com-

plex. Our results suggest that diversification within this complex, during the Miocene and

Pleistocene, is associated with both niche divergence and niche conservatism, with a pat-

tern that varies depending on whether the variables involved are related to the mean or sea-

sonality of temperature and humidity. Moreover, climatic variables related to humidity and

temperature seasonality were involved in the niche shift and genetic diversification of the

European/North African clade during the Pleistocene and in its maintenance in a fundamen-

tal niche distinct from that of the remaining members of the group. This study further high-

lights the need for a taxonomic revision of the T.mauritanica species-complex.

Introduction
Speciation by natural selection occurs mainly through two distinct mechanisms; mutation-
order and ecological speciation [1,2,3] (Fig 1). Mutation-order speciation occurs when distinct
advantageous or neutral mutations are fixed by chance between different populations/entities,
while these are under similar ecological conditions or selective pressures [1,3]. The fixation of
such mutations by drift, reduces the fitness of hybrids over evolutionary time scales [4]. On the
other hand, ecological speciation refers to the evolution of reproductive isolation between spe-
cies primarily by differential adaptation to distinct environmental or ecological conditions
[5,6,7]. In this context, natural selection acts as a divergent mechanism driving to fixation
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distinct advantageous mutations in each of the different environments [1,2]. Whether ecologi-
cal divergence may constitute the primary force inducing speciation or simply acts secondarily
after an interruption of gene flow due to other causes may be difficult to ascertain in practice
by monitoring the ecological traits of clades in a given phylogeny [1]. However, the appraisal of
ecological divergence can sometimes serve as a proxy to support species delimitation to under-
stand which ecologically associated factors led to speciation (e.g. [8,9,10,11,12]).

During ecological divergence, natural populations are subjected to different biotic and abiotic
factors, such as predation, competition, climate and food resource fluctuations [1,5], which may
lead to distinct evolutionary responses and patterns of climatic tolerances (reviewed in [13]) and
to the consequent evolution of organisms in new habitats (niche divergence) (e.g.
[8,14,15,16,17]). On the contrary, niche conservatism consists of the preservation of ecological
similarity among populations over time [18,19], being important in the classic model of allopat-
ric speciation, as it may limit adaptation to the ecological conditions at the geographic barrier
and promote genetic isolation and differentiation between vicariant populations (e.g.
[15,16,20,21]) (Fig 1). Hence, the assessment of whether the realized niche of natural populations
has evolved in a conservative [18,19,20,22] or divergent manner [1,2,5,23] is of paramount im-
portance, in order to evaluate the possibility of an ecological speciation event having occurred.

Not surprisingly, the study of niche evolution has increased in popularity in the last few
years, focusing on techniques to estimate overlap in realized niches of different species in an ex-
plicit spatial context [24], either based on ordination methods [25,26] or on the output of spe-
cies distribution models (SDMs) [27,28]. More recently, based on the methodology proposed
by Evans et al. [29], SDMs are being combined with calibrated phylogenies in order to study
the evolution of realized niches by reconstructing the ancestral environmental tolerances
among clades (e.g. [30,31,32]).

The Moorish gecko, Tarentola mauritanica (Linnaeus, 1758), is a species-complex distribut-
ed across the Mediterranean Basin, comprising six mitochondrial evolutionary clades, with
well-defined geographic ranges (Fig 2); Clade I is present in Central and Southwestern Moroc-
co; Clade II is exclusively Iberian [33]; Clade III is present in Southern Europe and North Af-
rica; Clade IV occupies Central Morocco; T. angustimentalis, endemic to the Eastern Canary
Islands (Clade V) lies within the T.mauritanica complex; and, finally, Clade VI is distributed
across Southern Iberia, Northeastern Morocco and Northwestern Algeria [33,34,35,36,37]. A
recent study by Rato et al. [34] estimated that the oldest cladogenesis event within this group
occurred around 5.88 Mya while the most recent one took place 2.47 Mya [34] (Fig 2). These
six groups appear to represent several closely related cryptic clades exhibiting high levels of
mtDNA diversity, but with nuclear phylogenies demonstrating limited evidence of monophyly
due to incomplete lineage sorting [34,37]. However, the paraphyly of T.mauritanica, as cur-
rently recognized, together with the obtained high levels of mtDNA divergence, indicate that a
taxonomic revision is needed [34]. Surprisingly, low levels of mtDNA variation within the Eu-
ropean/North African clade have been observed, when compared to the others. This was ini-
tially attributed to a recent colonization [33,36,37], particularly given the frequency with which
T.mauritanica is associated with humanized environments, leading to anthropogenic intro-
ductions [38]. However, recent molecular investigation of this pattern revealed that nuclear
loci do not show this lack of variation and, in fact, they exhibit higher nucleotide diversity val-
ues compared to the used mtDNA markers [39]. This is consistent to a process where selection
(most likely positive selection) is acting only on the mitochondrial variation of this clade, in-
creasing the frequency of one allele and causing a drop in the overall variability for this marker
[39,40]. Similar findings have been reported for pikas [41], monkeys [42] and even teleost fish-
es [43], where positive selection of the mtDNA has led to an increased capacity to inhabit envi-
ronments characterized by low temperatures. A similar scenario could be hypothesized for the
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European/North African clade, which occurs in colder environments. In this study, we aim to:
(1) evaluate if fundamental niche evolution is concordant with the currently accepted clades;
(2) assess the degree to which phylogenetic proximity predicts niche conservatism (i.e. similari-
ty in environmental tolerances); and (3) test if there is a climatic tolerance divergence of the
European/North African clade, with respect to the remaining ones.

To achieve these goals, we used ordination methods and SDMs to estimate niche differences
and similarities between the clades of T.mauritanica. Subsequently, the evolutionary history of
niche occupancy of each clade of T.mauritanica was reconstructed by merging the SDMs with
a published calibrated multilocus phylogeny of the genus Tarentola [34].

Materials and Methods

Environmental variables
In order to quantify the realized niches of the different clades of Tarentola mauritanica at a
geographic scale, we computed a set of multi-temporal variables capturing major annual

Fig 1. Illustration of mutation-order and ecological speciation. In mutation-order speciation, there is the initial fixation of advantageous mutations in the
population, which will increase in frequency, leading to the genetic isolation of species in the same ecological niche. Ecological speciation occurs when new
environmental conditions appear in the population with the adaptation of some individuals to this novel state and divergence of their niche and consequent
genetic diversification from the original population.

doi:10.1371/journal.pone.0127980.g001
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changes in environmental conditions based on pre-processed monthly variables derived from
the MODIS sensors of two NASA satellites and available at http://www.edenextdata.com. The
spatial and temporal resolution of the data sets are 30 arc sec for both, 8-day averages for
MOD11A2 and 16-day averages for MCD43B4 (for more details regarding sensor products
and variables extraction see [44,45]), covering the period 2001–2005. In this study, we used five
types of variables, each represented by monthly grids capturing averages, namely Middle Infra-
Red (MIR), Daytime (DTLST) and Night Time (NTLST) Land Surface Temperature, Normal-
ized Difference Vegetation Index (NDVI) [46] and Enhanced Vegetation Index (EVI) [47] to-
talling 60 single GIS layers (5 types of variables x 12 monthly variables). These 60 monthly
variables were then transformed into bioclimatic variables to capture major annual seasonal
variations using the dismo (i.e. biovars function) and raster packages [48,49] for Cran R 2.15
[50] (for details see S1 Table). NDVI allows the assessment of whether the target contains live
green vegetation, barren areas of rock, and or snow. While the EVI is calculated similarly to
NDVI, it corrects for some distortions in the reflected light caused by the particles in the air as
well as the ground cover below the vegetation. Since in most climates, vegetation growth is lim-
ited by water, rather than vegetation per se these two indices are here used as proxies for the
availability of humidity in the system (http://earthobservatory.nasa.gov/Features/
MeasuringVegetation/). Analogous to the 19 original bioclimatic variables (from http://www.
worldclim.org/bioclim) capturing seasonal extremes and variations in temperature and precip-
itation patterns as well as interactions among both, we computed a set of variables capturing
annual variations based on the remote sensing variables. For temperature related variables, the
respective subset of bioclimatic variables was derived from monthly average daytime and
nighttime land surface temperatures (i.e: Annual Mean Temperature; Mean Diurnal Range;
Isothermality; Temperature Seasonality; Maximum Temperature of Warmest Month; Mini-
mum Temperature of Coldest Month; Temperature Annual Range). For variables describing
the vegetation structure (NDVI and EVI; [51]) and proxy for humidity (MIR), only the respec-
tive set of bioclimatic temperature variables were computed. The final set of variables was
clipped to the general extent of the species’ distribution. Multi-co-linearity of the 30 predictors
was removed by performing a principal component analysis (PCA) computed in R [50]

Fig 2. Map illustrating the occurrence records of all six clades of Tarentolamauritanica used for the
SDMs and a calibrated phylogenetic tree with node ages (in Ma), modified from Rato et al. [34]. The
tree was obtained using concatenated nuclear (ACM4, MC1R, PDC, and RAG2) and mtDNA (12S rRNA and
16S rRNA) loci. Calibration was performed with the software BEAST [87], considering the mean substitution
rates and the standard error of the mean values for 12S, extracted from a fully calibrated phylogeny of
Tarentola from the Canary Islands [70,88].

doi:10.1371/journal.pone.0127980.g002
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summarizing the environmental conditions, in which only those principal components with
eigenvalues> 1 were retained. For detailed information on the workflow to create the 30 vari-
ables, see legend from S1 Table.

Species distribution models (SDMs)
Occurrence records of the animals from the different clades used to train the SDMs were the
same as in Rato et al. [34], plus six additional specimens of T. angustimentalis from the Canary
Islands (Fuerteventura and Lanzarote) collected in October 2012, used only in our study (see
S2 Table for geographic coordinates and clade assignment). Experienced herpetologists carried
out the collection and handling of the specimens captured in both Canary Islands. After identi-
fication of the species and recording the GPS coordinates, all animals were released at the site
of capture and none of them was sacrificed. This protocol has been approved by the Committee
of Animal Experimentation of the University of Porto (Portugal) under the Directive 2010/63/
EU of the European Parliament. All captures were carried out in public land and authorized by
the environmental authorities from both islands (Consejera de Pesca, Caza, Ambiente
Ambiente y Aula de la Naturaleza del Cabildo de Lanzarote and Consejería de Medio Ambiente
del Cabildo de Fuerteventura) using the permits 12570 and 2932, respectively. These permits
were issued specifically for our study.

All records correspond to locations of specimens collected in the field and genetically assessed
by Rato et al. [34]. The final dataset comprised 261 locations, corresponding to 40, 47, 121, 15,
21 and 17 records from clades I through VI, respectively. All records are illustrated in Fig 2.

The realized niches of the different clades were calculated by computing boxcar environ-
mental envelopes, using the Bioclim algorithm [52] as implemented in the dismo package [48]
for R [50]. Principal Components obtained previously from the environmental variables listed
in S1 Table were used as input data. We preferred to apply a rather simple algorithm here, such
as Bioclim, since it is best suited to summarize the realized niches of the clades without taking
the explanatory power of the variables into account, nor their interactions [53]. This may more
closely reflect Hutchinson’s [54] original idea of a species’ Grinnellian niche which constitutes
all environmental conditions under which populations may exist, irrespective of any weighting
of variables.

Realized niche overlap analyses
Based on the environmental variables X1–X30 listed in S1 Table, we computed univariate niche
density plots using the sm package [55] for R [50], as well as pairwise niche overlaps and both
niche background similarity and niche equivalency tests sensuWarren et al. [28] among clades.
Computations were conducted applying a statistical framework termed PCA-env, which was re-
cently proposed by Broennimann et al. [24]. In this framework, the available environmental
space of two clades, as defined by all conditions within a buffer of 100 km enclosing the species
records representing the potentially colonisable environmental space (see also [56]) accounting
for both natural and human mediated dispersal, was used to train a PCA. Both set of species rec-
ords and each set of available environmental conditions were projected into this PCA space. Sub-
sequently, the relative density of background conditions and species records across the first two
PCs were captured by a kernel density smoother in order to create density grids of r x r cells in
environmental space. We set the resolution of r to 100. These density grids were used to compute
niche overlaps in terms of Schoener´s D (as reviewed in [28,57]), which seems to perform better
than other metrics [58]. Schoener´sD ranges from 0 (no overlap) to 1 (complete overlap).

Hypotheses of niche equivalency and niche similarity sensuWarren et al. [28] were comput-
ed from the density estimations of species in environmental space following Broennimann
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et al. [24]. The niche equivalency test determines whether niches of two entities in two geo-
graphical ranges are effectively more equivalent than expected by chance, whereas the niche
similarity test addresses whether the realized niche overlap among entities can be attributed to
the available environmental space of one entity or to active habitat selection. For the niche
equivalency test, all occurrences of the two entities were pooled and randomly split into two
datasets, repeated 100 times, and the niche overlap statistic D was calculated. These simulated
values were used to construct 95% confidence intervals (CIs). If the observed value of niche
overlap falls within these CIs, the null hypothesis of niche equivalency cannot be rejected. For
the niche similarity test, niche overlaps are computed based on the environmental conditions
at the records of one taxon and randomly generated records within the available environmental
space of the second taxon. Therefore, this test is computed in both directions assessing whether
the observed niche overlap can be attributed to the available environmental spaces. If the ob-
served overlap is greater or smaller than 95% of the simulated values, the null hypothesis is re-
jected indicating that niche differentiation between entities is derived by habitat selection and
is not an artefact related to differences of the underlying environment. Otherwise, it is not pos-
sible to distinguish between overlaps due to active habitat selection or availability of specific en-
vironmental conditions. All computations were conducted in R [50] using the scripts provided
by Broennimann et al. [24], which were adapted to our dataset.

History of niche occupancy
To reconstruct the ancestral niche occupancy by each of the six clades of T.mauritanica, we
combined all of their potential distributions (SDMs) with a calibrated ultrametric tree modified
from the original multilocus phylogeny published by Rato et al. [34]; the ultrametric tree used
here corresponds to a subtree of the original, including only the clades of interest, calculated
using the software DENDROSCOPE v.1.2.4 [59]; the branches of each clade were collapsed to
a single terminal, using the drop.tip function from the R package ape [60]. Predicted niche oc-
cupancy (PNO) profiles were generated following Evans et al. [29] as implemented in the phy-
loclim package [61] for R. For each clade and corresponding PCs scores, the probability
distribution derived from Bioclim was binned into 100 evenly spaced categories, in order to ob-
tain a PNO profile per PC. From these PNO profiles, we drew 1000 random samples to esti-
mate the climatic tolerances of ancestral nodes, assuming a Brownian motion evolution and
using the generalized least squares method [62,63]. Ambiguities of relationships between clades
were taken into account by repeating the analysis over 1000 samples from the posterior distri-
bution of the ultrametric tree [29,64].

Results

Species distribution models (SDMs)
The dimensionality of the 30 variables listed in S1 Table was reduced into four principal com-
ponents, with the first two explaining 83.15% of the total variance (PC1 explaining 71% and
PC2 12% of the total variance). As for PC1, most of the variation along the axis was explained
by 21 variables (|r|� 0.8) pertaining to different temporal transformations of humidity (Mid-
dle Infra-Red), Land Surface Temperature, Normalised Difference Vegetation Index (NDVI)
and Enhanced Vegetation Index (EVI), while PC2 was mainly associated with seasonality (X4)
and annual range (X7) of the Middle Infra-Red and by the seasonality of the Land Surface
Temperature (X13), (for details see S1 Table).

Visual inspection of the potential occurrence of each clade in space (Fig 3) showed that for
some of them, the areas of high probability of occurrence are quite similar to their currently
known distribution (Clades III and V; see details in Fig 2). In contrast, for the South/Central
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Moroccan clade (Clade I), the Iberian (Clade II), the Central Moroccan clade (Clade IV) and
the North African Southern Iberian clade (Clade VI), the SDMs predicted a much larger area
of potential occurrence. Specifically, for Clade I suitable conditions occur in Northern Maghreb
and the Southeastern portion of the Iberian Peninsula; Clade II potentially ranged from the
Iberian Peninsula all the way to the Balkans and Northern Maghreb; Clade IV also potentially
included the Northern border between Morocco and Algeria and Northeastern Tunisia; and
Clade VI potentially covered the entire Western Mediterranean region. It is noteworthy that
the European/North African clade (Clade III) was mostly restricted to Mediterranean environ-
ments, being predicted to occur primarily near the coast. The same holds true for Clade VI.

Realized niche overlap analyses
Results from PCA-env analyses demonstrated that for all pairwise comparisons among clades,
the sum of the first two axes of the PCA explained between 65.97% and 77.05% of the total var-
iance. This information, as well as the contribution of the 30 variables to each PC for all pairs
of clades compared, is illustrated in more detail in S1 Fig. Regarding the pairwise assessment of
niche overlap using the metric D [57] (Table 1), this measure varied between 0.03 (Clade III—
Clade IV) and 0.43 (Clade III—Clade VI), corresponding to indices of no or very limited over-
lap and moderate overlap, respectively, according to the metrics suggested by Rödder and Eng-
ler [58]. For the pairs I-II, I-III, I-VI, II-VI, II-VI and IV-V, niche overlap is higher than
expected based on the environmental conditions available to each but significant results were
obtained in only one direction.

Fig 3. Species distribution models (SDMs) for the six clades of Tarentolamauritanica.Warmer colours indicate higher environmental suitability.

doi:10.1371/journal.pone.0127980.g003
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In agreement with these relatively low values of the Schoener´s Dmetric for most pairs of
clades, the niche equivalence hypothesis was rejected for all pairwise comparisons (in all cases
P<0.05, Table 1), suggesting that all clade pairs possess more significantly distinct realized
niches than expected by chance.

History of niche occupancy
Results of the ancestral niche occupancy profiles (Fig 4) showed evidence of cladogenesis asso-
ciated with both niche divergence and conservatism.

Niche divergence was most noticeable for Clade V, and particularly for climatic variables as-
sociated with PC1, PC2 and PC3, while niche conservatism was mainly observed between
clades I and IV and clades II and III along PC1. Surprisingly, this clear evidence of ancestral
niche divergence for T. angustimentalis (Clade V) is not in agreement with the results obtained
for the niche overlap in Table 1. For PC1 (which explains 71% of environmental variance), the
closely related clades II and III exhibited highly similar environmental affinities, as well as
clades I and IV, while clades V and VI showed evidences of niche divergence from the remain-
ing clades, although their current environmental tolerances exhibit a high level of overlap with
Clade I, and clades II and III, respectively. Most of these results are in agreement with the ones
obtained for the niche overlap analyses in Table 1, as most clades displayed some levels of
niche overlap, except the pairs III-IV and IV-VI. PC2 predicts a slight ancestral niche diver-
gence of the mean tolerances of Clade III from the remaining groups, although its current toler-
ance range still largely overlaps. Since humidity and temperature seasonality were the variables
most strongly correlated with PC2, these had the highest influence on the niche tolerance pat-
tern exhibited by all clades.

Table 1. Niche overlap analyses.

Comparison (1–2) Niche overlap (D) Niche Equivalency Niche Similarity (2!1) Niche Similarity (1!2)

Clade I—Clade II 0.26 (low) 0.02 0.06 0.02

Clade I—Clade III 0.32 (low) 0.02 0.04 0.99

Clade I—Clade IV 0.12 (none) 0.02 0.59 0.16

Clade I—Clade V 0.09 (none) 0.02 0.55 0.40

Clade I—Clade VI 0.26 (low) 0.02 0.14 0.02

Clade II—Clade III 0.33 (low) 0.02 0.02 0.02

Clade II—Clade IV 0.05 (none) 0.02 0.57 0.32

Clade II—Clade V 0.14 (none) 0.02 0.20 0.44

Clade II—Clade VI 0.24 (low) 0.02 0.02 0.08

Clade III—Clade IV 0.03 (none) 0.02 0.04 0.02

Clade III—Clade V 0.13 (none) 0.02 0.08 0.61

Clade III—Clade VI 0.43 (moderate) 0.02 0.02 0.02

Clade IV—Clade V 0.13 (none) 0.02 0.02 0.50

Clade IV—Clade VI 0.09 (none) 0.02 0.02 0.89

Clade V—Clade VI 0.07 (none) 0.02 0.40 0.24

Pairwise niche overlap values using the metric D [57], corresponding overlap classification according to Rödder & Engler [58] and P-values of niche

similarity and equivalence via randomization test. Significant values with P<0.05 in the niche equivalency test and falling outside of the 95% CI (0.025–

0.975) of the niche similarity test are shown in bold.

doi:10.1371/journal.pone.0127980.t001
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Discussion
The study of niche evolution is of paramount importance in order to understand the speciation
mechanisms behind the divergence of species. Specifically, the evaluation of whether the real-
ized niche of natural populations has evolved in a conservative or divergent way, allows us to
infer if an ecological speciation event may have taken place.

The moderate overlap value observed for the Clade III—Clade VI comparison is related to
the fact that individuals from both the European/North Africa (Clade III) and the North Af-
rica/Southern Iberian (Clade VI) clades are mostly distributed along Mediterranean climate
areas (Fig 2) and, therefore, it is reasonable that their potential niches tend to overlap. The
moderate niche overlap of these two clades is also supported by the results obtained with the
niche similarity tests, as this comparison, along with the pair composed by clades II and III,
were the only ones where a two-way significantly higher similarity than expected based on
their available environmental conditions was found. Nevertheless, some authors have argued
that comparison of SDMs is probably not the best surrogate for a comparison of environmental
requirements (reviewed in [65]). Not surprisingly, the results obtained from this test differ
from some of the niche similarity tests. For example, for clades III-IV and IV-VI niche similari-
ty was significantly smaller than expected based on the environmental conditions available to
each clade.

From an overall inspection of the environmental tolerance profiles by PC1 and PC2, the
general speciation pattern within the Tarentola mauritanica complex, seems to have led to

Fig 4. Inferred history of the evolution of climatic tolerances within the Tarentola mauritanica species-complex. The calibrated phylogenetic tree
used, was modified from Rato et al. [34]. Interior nodes represent the mean of climatic tolerances inferred for the most recent common ancestor of the extant
clades defined by that node. Solid lines connect ancestors with their descendants. A vertical dashed line indicates the 80% central density of climatic
tolerance for each extant taxon, and the taxon label, to the right of each graph, indicates the mean. Lines and labels are coloured according to clades defined
in Fig 2.

doi:10.1371/journal.pone.0127980.g004
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both niche divergence and conservatism. Niche divergence seems to be clear for Clade V, while
conservatism is noticeable in clades I and IV (in both PC1 and PC2) and between clades II and
III (in PC1 but not PC2). Furthermore, there is no evidence of similar environmental toler-
ances with phylogenetic proximity (except for clades II and III in PC1). However, when analys-
ing the results obtained for the niche overlap analyses, it is apparent that currently some of the
clades occupy quite similar ecological conditions.

Around 5.88 Mya, the North African/Southern Iberian Clade (Clade VI) became separated
from the remaining clades, matching very closely the closing of the Strait of Gibraltar, and the
Messinian Salinity Crisis (5.959 to 5.33 Mya) [66,67,68]. Since there are no fossil records of
Tarentola in the Iberian Peninsula from this period [69], we can only assume that individuals
did not cross from North Africa to Europe during the Miocene. Results from the niche overlap
analyses confirm that Clade VI still occupies a relatively distinct realized niche from Clade IV
and the ancestral climatic tolerance profile suggests cladogenesis by ecological divergence,
most probably in North Africa.

Later, the separation of the ancestor of Tarentola angustimentalis (Clade V) took place,
when these reached the Eastern Canary Islands (Lanzarote and Fuerteventura) around 4.82
Mya, by transmarine dispersal [34,70]. In this new environment, the ancestors of T. angusti-
mentalis were subject to novel environmental conditions, leading to their ecological divergence
in allopatry with respect to their continental relatives, as suggested by their ancestral climatic
tolerances. Studies on the paleoclimatology of the Canaries indicate that during the Mio-Plio-
cene these islands had a tropical climate similar to the present day conditions along the coast of
the Gulf of Guinea and Caribbean Sea [71]. Currently, due to their old geological ages deter-
mining the erosion of the relief, Lanzarote and Fuerteventura are no longer able to retain pre-
cipitation brought by trade winds [72]. In consequence, the climate of both islands has become
heavily influenced by the North African Saharan winds, presenting annual temperatures rang-
ing from 17–25°C and 22–35°C, respectively and very low levels of precipitation per year (147
mm in Fuerteventura) [73]. Hence, it was expected that individuals of T. angustimentalis
would inhabit completely distinct ecological conditions, yet the acceptance of the null hypothe-
sis of niche background similarity test suggests that the low levels of niche overlap between this
clade and the others is most likely a result of the available background of Clade V; when defin-
ing a buffer of 100 km around the species records, mostly ocean will be selected and the back-
ground will consist mainly of unsuitable environment, making it difficult to determine whether
there is active niche search or not.

Around 4.32 Mya, the South-Central Moroccan clade (Clade I) split from the remaining ele-
ments, as did later the Central Moroccan clade (Clade IV), approximately 4.14 Mya. However,
these clades conserved the same niche and currently show no signs of niche divergence between
them. The most probable hypothesis to explain this pattern is that both clades evolved in allop-
atry, likely caused by vicariant barriers, resulting in a high-level of niche conservatism. This
would imply that in the past their distribution was distinct from today, since they are presently
in contact. Unfortunately, past SDMs can only be produced for the available palaeoscenarios,
namely up to the Last inter-glacial (~120.000–140.000 years BP) [74], making it difficult to val-
idate this hypothesis.

By contrast, the ancestor of clades II (Iberian Clade) and III (European/North African
Clade) split from Clade IV, approximately 4.14 Mya, with a strong niche divergence between
them. Such divergence mainly concerned the mean temperature and humidity of the areas oc-
cupied (PC1). Subsequently, around 2.47 Mya, Clade III diverged from Clade II (and from the
remaining clades) occurring in areas undergoing distinct humidity-related and temperature
seasonality conditions (PC2). We interpret this as an ecological shift of Tarentola geckos from
arid to Mediterranean habitats, which indeed started to spread during the Miocene-Pliocene
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transition [75], and subsequent adaptation to Mediterranean continental climate of Central
Iberian Peninsula. Whether the first transition took place in North Africa or in the Iberian Pen-
insula is debatable but certainly the second transition should have been exclusively Iberian
[34], with Clade II diverging from Clade III in allopatry due to the Mediterranean acting as a
barrier. Depending on the contribution of the geographic barriers (i.e. the Gibraltar Strait),
such niche shifts may have played a substantial role in the speciation processes of this group, as
well as allowing it to occupy more northerly regions in Europe that would have been previously
unavailable. Indeed, a recent ecophysiological study comparing multiple Iberian populations
belonging to these two clades [76] reports clear differences in water loss rates. Overall, the Eu-
ropean lineage displayed a trend for higher water loss when compared to the Iberian lineage.
The lack of correspondence between ecophysiological traits and local climatic conditions, sup-
port the existence of a phylogenetic signal rather than local adaptation. These results suggest
that divergent evolutionary responses to the environment in both lineages, mainly acting on
water ecology, may account for the differences in their range expansion [76]. These findings re-
inforce the evidence that humidity-related conditions led to the divergence between these two
clades, at least in the Iberian Peninsula. Nonetheless, such a shift may have permitted both
clades to cope with the successive expansions and retractions during the Pleistocenic climatic
oscillations [77,78] and, more recently, allowed Clade III to colonize (through human-media-
tion) other continental and insular regions of the Mediterranean Basin [34].

Interestingly, Tarentola responded to the environmental changes during the Miocene result-
ing in a combination of niche conservatism under unchanged conditions and niche shift to
newly arisen habitats (e.g. [79]). By contrast, responses to the faster climate oscillations during
the Pleistocene and the Holocene are dominated by niche conservatism suggesting a degree of
phylogenetic inertia (e.g. clades II and III and clades I and IV for PC1). During the glaciations,
Tarentola populations probably survived in Iberia in various isolated “microclimate pockets”
[80], which is in agreement with the “refugia-within-refugia”model, hypothesized for the Ibe-
rian Peninsula (but see [81], e.g. [82]). It is noteworthy that Clade III, the most recently diver-
gent in terms of realized niche, shows evidence of selection, which led to the existence of a
single mtDNA variant [39]. Support that individuals from this clade have chosen unique envi-
ronmental conditions is corroborated not only by its ancestral niche occupancy profile in PC2,
but also by the fact that none of the other clades were ever found in the range occupied by the
European/North Africa clade. Taking into account that individuals of Tarentola are frequently
associated with humanized habitats, and their accidental introductions are common [38], espe-
cially around the Mediterranean, we would expect other clades to be introduced in Europe as
well. Competitive interactions between clades (e.g. [83]) can also be hypothesized, and this
should be validated with extensive fieldwork and modelling in the contact areas [84] as well as
by experimental tests [85].

Conclusions
The integration of spatial ecological models with phylogenies provides a very powerful tool,
helping in the delineation of cryptic species [8,9,10], or to at least giving additional support to
their specific status [86]. According to the results from this study, the diversification of the
clades within the Tarentola mauritanica species-complex fits both the niche divergence and
conservatism profiles, with individuals of some clades still maintaining a realized niche distinct
from their relatives. These results, allied with the high levels of mitochondrial divergence ob-
served between clades [34], provide additional evidence for the need of a taxonomic revision of
the whole complex, using a battery of nuclear markers to test species boundaries. Likewise, the
niche evolution study and overlap patterns of the European/North African clade corroborate
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that climatic variables related to humidity and temperature seasonality (and hence, natural se-
lection) resulted in the divergence of this clade and to the maintenance of the individuals in a
realized niche distinct from the remaining members of Tarentola mauritanica.

Supporting Information
S1 Fig. Pairwise comparison of niches in climatic space (PCA-env) between all clades of the
Tarentola mauritanica species-complex. Upper left and upper right plots represent the niches
of the two clades compared; density of occurrence is indicated by the degree of grey-shading;
solid and dashed contour lines illustrate 100% and 50% of the available environmental space,
respectively. Lower left plot illustrates the contribution of each of the remote sensing variables
(X1 to X30; for abbreviations see S1 Table) on the two axes of the PCA and the explanatory
power of the two main axes. Red diamonds on the right graphs indicate the position of the ob-
served niche overlap.
(PDF)

S1 Table. Remote sensing variables and corresponding abbreviations used in this study.
The results of the Principal Components analysis (PCA) include the component loadings and
the correlation scores (in parenthesis) calculated using Pearson’s r correlation, for the first four
principal components (PC). In both PC1 and PC2 the numbers in bold correspond to the vari-
ables that contributed more to each axis (absolute Pearson’s r correlation, |r|� 0.8). The work-
flow to create the 30 variables was as following: the starting point were 5 sets of variables, each
with 12 months = 60 single variables representing monthly means (12 x NLST; 12 x DLST; 12 x
MIR; 12 x NDVI; 12 x EVI). For each of the set of 12 monthly variables of MIR, NDVI and EVI
the following 7 temporal transformations were computed (= 21 new variables): BIO1 = Annual
Mean; BIO4 = Seasonality; BIO5 = Max of Month with highest scores; BIO6 = Min of Month
with lowest scores; BIO7 = Annual Range; BIO10 = Mean of Quarter with highest scores;
BIO11 = Mean of the Quarter with lowest scores. Based on monthly variables of NLST and
DLST the following 9 temporal transformations were computed (= 9 new variables):
BIO1 = Annual Mean; BIO2 = Mean Diurnal Range; BIO3 = Isothermality; BIO4 = Seasonality;
BIO5 = Max of Month with highest scores; BIO6 = Min of Month with lowest scores;
BIO7 = Annual Range; BIO10 = Mean of Quarter with highest scores; BIO11 = Mean of the
Quarter with lowest scores. These 30 new variables were subject to a PCA.
(DOC)

S2 Table. Specimens used in this study. Individuals and their corresponding clade assignation
and geographic coordinates.
(DOC)
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