Vol. 17 no. 12 2001
Pages 1166-1178

Giegerich?

Minimum conflict: a divide-and-conquer
approach to phylogeny estimation

Georg Fuellen 3* Johann-Wolfgang Wégele' and Robert

"Ruhr-Universitét Bochum, Lehrstuhl fir spez. Zoologie, D-44780 Bochum,
Germany, ¢ Universitét Bielefeld, Technische Fakultét, D-33594 Bielefeld, Germany
and 3Universitat Minster, Integrated Functional Genomics, IZKF, D-48149 Mdnster,

Germany

Received on December 1, 2000; revised on May 8, 2001; accepted on May 25, 2001

ABSTRACT

Motivation: Fast and reliable phylogeny estimation is
rapidly gaining importance as more and more genomic
sequence information is becoming available, and the
study of the evolution of genes and genomes accelerates
our understanding in biology and medicine alike. Branch
attraction phenomena due to unequal amounts of evolu-
tionary change in different parts of the phylogeny are one
major probiem for current methods, placing the species
that evolved fast in one part of the phylogenetic tree, and
the species that evolved slowly in the other.

Results: We describe a way to avoid the artifactual
attraction of species that evolved slowly, by detecting
shared old character states using a calibrated comparison
with an outgroup. The corresponding focus on shared
novel character states yields a fast and transparent
phylogeny estimation algorithm, by application of the
divide-and-conquer principle, and heuristic search: shared
novelties give evidence of the exclusive common heritage
(monophyly) of a subset of the species. They indicate
conflict in a split of all species considered, if the split tears
them apart. Only the split at the root of the phylogenetic
tree cannot have such conflict. Therefore, we can work
top-down, from the root to the leaves, by heuristically
searching for a minimum-conflict split, and tackling the
resulting two subsets in the same way.

The algorithm, called ‘minimum conflict phylogeny es-
timation’ (McoPE), has been validated successfully using
both natural and artificial data. In particular, we reanalyze
published trees, yielding more plausible phylogenies, and
we analyze small ‘undisputed’ trees on the basis of align-
ments considering structural homology.

Availability: MCOPE is available via http://bibiserv.techfak.
uni-bielefeld.de/mcope/.
Contact: fuellen@alum.mit.edu

*To whom correspondence should be addressed.

1 INTRODUCTION

Phylogeny estimation, that is the inference of the evo-
lutionary history of the various life forms (species)
on Earth, is a widely studied problem that is not yet
solved to satisfaction (Swofford et al., 1996; Wigele,
1996b). Nevertheless, due to improvements in nu-
cleotide sequencing technology, larger and larger data
sets are in need of phylogenetic analysis, featuring
hundreds of species and thousands of nucleotides. In
fact, whole genomes are becoming available, making
an all-encompassing phylogenetic analysis possible for
the first time. Whole genomes comprise huge data sets
in the order of billions of nucleotides, and it would
be worthwhile to align the data as far as possible,
and to estimate phylogenetic trees from the data that
comprise all the inheritable information of the differ-
ent species. Such an analysis not only reveals insights
into history, but it is crucial for our understanding of
molecules, organisms and ecosystems as they are today,
see e.g. Harvey et al. (1996)—‘Nothing in biology makes
sense except in the light of evolution’ (Dobzhansky,
1973).

Previous work

Computer algorithms have been used extensively to
approach phylogeny estimation. There are three major
classes of algorithms—distance methods, parsimony,
and maximum likelihood (Swofford er al., 1996). All
methods have found dedicated followers, and the (some-
times furious) debates on the methods’ (dis)advantages
clearly indicate that none of these solves the problem to
satisfaction. This paper suggests a new type of method,
clearly distinct from the ones mentioned. It is based
on very simple principles, which have a long history in
systematics; we cast them into an algorithmic format
suitable for molecular data.
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Shared novelties

Investigating the phylogenetic relationships between m
species, let an alignment of length
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be given, as a rectangular arrangement of the correspond-
ing m biosequences. Gaps are inserted into the sequences
yielding the ‘padded’ sequences sy, ..., S, highlighting
homologous sites in spite of insertions and deletions. The
character states in an alignment column are supposed to
have evolved from a common ancestral character state,
and every column corresponds to one individual ‘char-
acter’. The most natural way of analyzing such data re-
sulting from the ‘descent with modification’ process of
evolution is to look for the modifications. In the case of
biomolecular sequences, these are modifications of char-
acter states (nucleotides) that appeared anew in an ances-
tral species. They give evidence of the exclusive common
heritage (or, monophyly) of all the species to which that
ancestral species gave rise. Consequently, our method for
recovering the phylogenetic tree tries to detect novel char-
acter states shared between species because these species
are the sole descendants of an ancestral species. In formal
terms, we are given a tree 7, and a monophyletic group g
of species. Then, a shared noveltynin g isacharacter
state n that was inherited by at least two species in g, and
first appeared as a substitution in the last common ances-
tor of g. In cladistic terms, a shared novelty is also called
a synapomorphy, or a shared derived character
state (cf. Hennig, 1966; Wigele, 1996a). If we can iden-
tify the shared novelties correctly, we can estimate the cor-
rect phylogeny instantanously.

Erosion

A major challenge for phylogeny estimation using
molecular data is that shared novelties do not usually
appear as insertions into the sequence, i.e. they do not
usually stand out, aligning with gap characters. Instead,
they are substitutions in alignment columns that already
display a shared novelty that appeared earlier (ie. a
symplesiomorphy, also known as a shared old,
or primitive, character state, cf. Hennig,
1966; Wigele, 1996a). Such substitutions do not always
introduce random noise (random homoplasies) into the
data. Instead, if many substitutions affect the same set of
species, they can lead to artifacts that mislead standard
phylogeny estimation methods in a systematic way.
One such phenomenon, which we call ‘erosion’, will be
described next.

Consider Figure 1, derived from the Crustacea data
presented in Section 4. On the right, part of the alignment
of the 18S-rDNA sequences of twelve Crustacean species
is displayed. Species 12 is the outgroup, i.e. a species
that is not among the descendants of the last common
ancestor of the species 1-11 to be investigated. On the left,
the putative phylogeny based on morphological features is
given, and we can derive the following hypotheses. In the
columns marked by arrows in green, shared novelties give
evidence of monophyly of species 1-8, but hide shared
novelties showing monophyly of 1-11. The consequence
is an illusion of shared novelties in 9-11, triggered by
shared old character states. If there are many of these,
standard methods of phylogeny inference are led astray:
for the full-size data set, neighbor joining, parsimony and
likelihood pull 9-11 into one group. In particular, only a
few character states in 12 that coincide with the shared
novelties in 1-8 can render the tree with subtree 9-11
the most parsimonious one (cf. Fuellen, 2000). Such
a low level of ‘long-branch attraction’ (cf. Felsenstein,
1978) can be avoided by investigating matching rates with
the outgroup; they indicate that character states shared
by 9-11 are old (symplesiomorphic), and we can then
completely disregard all alignment columns that support
an apparent monophylum 9-11. In other words, shared
character states of 1-11 eroded away in the fast-evolving
sequences of 1-8, and based on the evidence given by the
matching rates with the outgroup, we ignore the shared
old character states left over in 9-11 that give misleading
information about the phylogeny.

2 METHOD AND ALGORITHM

Let us formalize our phylogeny estimation algorithm
based on telling apart shared novelties and shared
old character states by outgroup comparison. First we
introduce a specific notion of consensus sequences.

Majority sequences

Given an alignment A and a group g of species for
which we want to calculate the majority sequence, we
employ relative majority voting in a column-by-
column fashion. The majority character state of column j
is denoted by c;(g), and it is obtained by first ordering the
symbols found in column j by frequency. Then, symbols
of same frequency are ordered lexicographically, and the
first symbol is taken, unless it is the gap symbol. In the
latter case, the majority character state is set to ‘!’

Inconsistency patterns

Given a split G = g versus g = gvg, where gUg
covers all species currently investigated, a character state
in g (or g) that is part of a variable subcolumn is called
an inconsistency, if it is matching with the majority
character state of the complementary group (g or g). Given
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Fig. 1. Outgroup comparison reveals shared old character states. On the left, a tree based on morphological data is shown (see Section 4,
Crustacea data). On the right, the beginning of the alignment of the corresponding 18S rDNA is displayed. Two types of shared character
states are put into boxes: type A (marked in green) is shared by 9-11 and it tends to match the outgroup 12, while type B (marked in brown)
is shared by 1-10, and it does not tend to match. The conclusion is that type A is composed of shared old states, while type B contains mainly

shared novelties of 1-10.
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Fig. 2. Panel 1: schematic overview of minimum conflict (MCOPE, see text). Panel 2: activation of the difference between two values, std and
obs. The more the former exceeds the latter, the larger the activated difference. In the case of inconsistency patterns, the variables are called
as indicated in brackets. Panel 3: weighted activation of the number of observations. Only a sufficiently large number of observations that
come with a sufficient confidence trigger a significant amount of evidence. In the case of inconsistency patterns, the variables are called as
indicated in brackets. Panel 4: the ‘advice’ value influences the ‘preliminary’ value.
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a column j, a subset ¢+ = #(j) of g (or g) is a pattern
in j, if inconsistencies are found in all species of ¢, but
in no species of its complement (g —¢ or g —t). By
inspecting the entire alignment, we can prepare two lists
of patterns. For each subgroup g and g, T (g) and 7 (g) list
the subsets of species from the subgroup that are patterns.
The pattern count s(r) of pattern ¢ is the number of
its supporting columns. These are the columns in which
inconsistencies are observed exactly in the species making
up z.

A split of a set of species may trigger patterns for many
reasons. For example, shared novelties giving evidence
of the monophyly of subsets may be torn apart by a
split. Then, at least one group in the split cannot be
monophyletic, and we expect to observe a well-supported
pattern in this group. Or, shared old character states left
over by erosion may be torn apart. Or, convergences may
induce patterns, cf. the end of Section 4.

Phylogeny estimation based on inconsistency
patterns
Given a pattern, we will quantify its conflict, i.e. its
evidence for shared novelties torn apart. Given a split, its
conflict will be the maximum pattern conflict observed.
Then, we can combine heuristic search and divide-and-
conquer into a phylogeny estimation algorithm. Starting
with any split of the set of species analyzed, conflict
arises if shared novelties can be found for a subset of the
species: if this subset is torn apart by the split, the shared
novelties are then found on both sides, they are torn apart
themselves. If a split with no (or minimum) conflict can
be found by moving high-conflict species between the two
sides, we assume that we have found the most ancient
separation which does not tear apart any shared novelties.
(See Fuellen, 2000, for details of the heuristic search.) The
question is how the analysis can be continued. The most
natural answer is to use divide-and-conquer.

We proceed top-down, from the root to the leaves, as
follows. Given a set of species,

o find the split with minimum conflict,

e divide the set of species into two putative mono-
phyletic groups, according to the split with minimum
conflict,

o call this procedure for each group recursively as long
as its size is larger than 2.

An overview of our method, thus termed ‘minimum con-
flict phylogeny estimation’ (MCOPE) is found in Figure 2,
panel 1.

Sigmoid activation

To evaluate the conflict induced by a split, we will evalu-
ate inconsistency patterns in a cascade of calculations de-

signed to filter out those patterns due to erosion, and to
keep those patterns that give evidence of the monophyly
(shared novelties) of a subset of the species considered.
To trigger clear decisions whenever possible, filters will
be used based on sigmoid neural network activation func-
tions.

As a first example, Figure 2, panel 2, displays the
sigmoid activation of the difference of two values (std and
obs), with the property that the return value is the higher,
the larger the excess of std with respect to obs is. The
formula is

1

excessy (std, obs) := mm,

based on the usual sigmoid neural network activation
function (see e.g. Michie ez al., 1994). If std and obs are
in the range [0, 1], their difference is in [—1, 1], and the
smoothness of the slope of the activation is set to § = 0.1,
which is our standard smoothness for this input range.

Amount of evidence

Analyzing an inconsistency pattern, we face the problem
of evaluating evidence from many small observations,
to which a single overall confidence value is assigned.
In our case, each column that bears the inconsistency
pattern is an observation. Based on all columns, we
will estimate an overall confidence that the split under
consideration triggers the pattern because it tears apart
shared novelties. In other words, we are looking for
evidence for the hypothesis that the split does not separate
two monophyletic groups; we assume that in this case
shared novelties giving evidence of monophyly are torn
apart, creating recognizable patterns.

Evidence evaluation is based on the following general
rules:

e evidence requires a sufficiently high overall confi-
dence;

e evidence can only be derived from sufficiently many
observations;

o if there are sufficiently many observations for which
we are in doubt, we are in a plateau of partial evidence.

Comparing evidence for different hypotheses of non-
monophyly derived for different splits, a single cutoff
value is not appropriate. Instead, we will provide a
continuous assessment of evidence based on a sigmoid
formula, given the number of observations s(¢) of pattern
¢t and an estimate v(¢) that expresses a confidence that the
observations have some distinct property (i.e. that they are
due to shared novelties that are torn apart). We define the
amount of evidence as follows, given thresholds rg
and vg:

evidence';“(s (1), v(t)) 1= excessq,,(r(t), ro) - r (1),

1171



G.Fuellen et al.

where
r(t) = excess;j,,](v(t), vo) - (1)

is the number of observations weighted by confidence,
that is the confidence-corrected pattern count.
As discussed below, the symbols > and 7 indicate slight
modifications of the excess formula just introduced.

For a specific instantiation of the thresholds, the func-
tion is shown in Figure 2, panel 3, and we already note
that it matches our general rules. The basic idea of the for-
mula is to suppress a small number of observations as well
as any observations with low confidence, multiplying the
number of observations s(z) by the activated confidence
estimate, excess‘gj’ n(v(t), Vo), and then activating the re-
sulting confidence-corrected number of observations: the
more r(t) exceeds the threshold count rg, the more r(¢)
can retain its value. If r(¢) is much smaller than ry, it is
squashed to zero. Such an activation reflects that a small
number of observations cannot be used to reach reliable
conclusions. Furthermore, taking excessg’,:"n(v(t), vg) in-
stead of v(z) implies that strong confidence is amplified,
and weak confidence is squashed. (The formula for the
amount of evidence is an improvement over the formula
presented in Fuellen (2000); at that time, the pattern count
s5(t) was compared to the threshold sg, which was based on
the mean and standard deviation of the distribution of all
pattern counts. Now, we compare the confidence-corrected
pattern count r(¢) to a threshold r¢ that will be based on
the mean and standard deviation of the distribution of all
confidence-corrected pattern counts. In cases of massive
erosion, exemplified in some of the artificial data sets pre-
sented later on, this distinction matters: using the old for-
mula, valid patterns due to shared novelties may be mis-
labeled as insufficient if they are found together with an
abundance of low-confidence patterns triggered by ero-
sion. These low-confidence patterns inflate sq but not rg.)

Both excess formulas are modified. On the one hand,

1
1+ e~ @—r0)/67”

excessg, »(r(t), ro) =

uses an odd integer n like 5 to squash any residual
evidence rigorously for cases where there are not enough
observations. On the other hand,

excess‘gj’"(v(t), vg)

1 .
v CoETny if v(r) > vo,
1

i
L otherwise

1+e—((v(r)*vo)/( =g

aligns the smoothness of the activation with the size of
the interval; this is important for vy # 0.5. As can be
seen from Figure 2, panel 3, using vg = 0.75 as the
threshold, the interval [0, 0.75] is larger than [0.75, 1], and
the slope of the function in [0, 0.75] needs to be smaller,

if we want to cover the intervals in a symmetric way. In
effect, this ‘symmetric scaling’ creates a plateau of partial
evidence for 1/3 < v(t) < 3/4. Again, exponent = 5
suppresses very doubtful cases rigorously. Both vg = 0.75
and 6, = 0.1 are values found empirically. However, we
will estimate ry from the data set, and 6, is then given by
the rule 6, /rg = 6, /vp.

Investigating patterns

Given a split G = gvyg, an outgroup gO, and an
inconsistency pattern ¢ for this split, we investigate
whether the pattern can be explained by erosion, or not.
Our investigation relies on two types of matching rates
with respect to the outgroup, as described in the next
subsections. If a pattern cannot be explained by erosion,
the validity estimate that we introduce to measure our
confidence will be maximum, and we will assume that
shared novelties are torn apart by the split.

Matching rates

A matching rate is the frequency of matching charac-
ter states, defined for two disjoint groups of species I1 and
I> to be compared, and a set of columns J in which the
comparison takes place. In formal terms,
m, I, J) = l{jelJ: Cj(Il) —C](IZ)}I’
171

where ¢ (1) is the majority character state of the species
making up /, at column j.

Let an alignment of £ species, A = (a)ie(i,,....is} =
Qjyy - iy ..., Gy, Where {i1, ..., i} C {1,...,m}, of
length g be given. We ignore constant columns. One
example of a matching rate is the relative number of
‘preserved’ character states displayed. Given an outgroup
g0, this preservation rate of species i is defined as

pi)=m(i, g0, {j1,..., jg}).

Species softness

The first but weak criterion to detect whether a pattern
is due to erosion is based on preservation rates. The
species softness g(t) of the species involved in a
pattern ¢ found in group g is given by

q(r) ;= excessp( min p(i), max p(i)).
ieg—t et

The species in ¢ are soft if the minimum preservation rate
‘outside’ ¢ is larger than the maximum rate ‘inside’ ¢. If the
species involved in pattern ¢ are soft, we have a weak hint
that no erosion took place, simply because erosion usually
happens to the less preserved species, leaving shared old
character states in the more preserved ones. However,
species softness is neither a necessary nor a sufficient
erosion criterion since random substitutions in individual
species may overshadow any difference due to the erosive
process itself.
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Pattern novelty

As indicated in Figure 1, we can base a stronger erosion
criterion on outgroup comparison. The basic idea is
that, for a split that tears apart shared character states,
inconsistency patterns matching the outgroup are likely
due to erosion affecting the shared novelties of a larger
group of species, and they are not due to shared novelties
of a subset of the species investigated. However, matching
with the outgroup needs to be calibrated because it also
reflects the evolutionary distance between the outgroup
and the group currently under consideration.

e The outgroup gO may be close, or farther away,
because it may be subject to substitutions.

o Shared novelties of the group gUg under consideration
affect the distance as well.

Therefore, we compare two matching rates. The ‘neutral’
matching rate used for standardization is based on the
columns without the pattern considered. The comparison
of this matching rate with the matching rate of the pattern-
supporting columns can reveal whether the pattern is due
to erosion, as long as the ‘neutral’ columns that do not
exhibit the pattern are subject to approximately the same
amount of substitution with respect to the outgroup.

For example, if the outgroup is subject to nonconvergent
substitutions, both matching rates will be modified: they
tend to go down by the same amount. In the case of
convergent substitutions, both matching rates will tend
to go up. If the current group is subject to substitutions
(i.e. if shared novelties appear for g U g), both matching
rates tend to go down as well if the pattern is due to
erosion. (The neutral matching rate goes down because
these substitutions do not tend to match the outgroup. The
observed matching rate for a pattern ¢ goes down because
these substitutions are subject to the same erosive process
contributing to ¢.)

Given a split G = gvyg of species {i,...,ig} C
{1,...,m}, let us assume that we have obtained the list
of patterns 7' (g) observed in group g in alignment A. We
fix aminimum column count §, which is the minimum
number of supporting columns that a pattern needs in
order to be investigated. Patterns with less support are
ignored. Empirically, § is taken as the base-2 logarithm
of the number of variable alignment columns. This value
is sufficiently low (it is 8.0 for 256 variable columns) that
no relevant information should be lost. The observed
matching rate is m(t, g0, C(t)), where C(¢) are the
columns supporting ¢. The neutral matching rate
m(t, g0, C'(¢)) is based on the neutral columns of ¢

C'(t):={jei-..

The neutral matching rate checks outgroup matches con-
sidering the same species ¢ as the observed matching rate,

yJg) 1 t(j) =@ ort(j) is ignored}.

but for a different set of columns. This set C’(z) consists
of columns featuring no pattern, and columns featuring an
ignored pattern for the species in g. The former may fea-
ture only deviations in g that are not inconsistent because
they do not match with the majority of the other group, and
columns that are constant in g—in both cases, no pattern
is observed. As the overall number of random deviations
in a data set increases, so does the number of inconsistent
ones, and the first subset of C’(¢) shrinks, whereas the sec-
ond subset grows.

The novelty estimate n(f) is the excess of the
neutral matching rate in comparison to the observed
matching rate:

n(t) := excessg(m(t, g0, C'(t)), m(t, g0, C(t))).

The larger the excess, the more likely no erosion took
place. (See Figure 2, panel 2, for a plot where the activated
difference is the novelty estimate.)

Considering split 1-8 v 9-11 in Figure 1, the character
states of the majority sequence of 1-8 form a pattern ‘9,
10’ in the columns marked in brown. We calculate an
‘observed’ matching rate of 4/8 = 0.5 for this pattern, and
a ‘neutral’ matching rate of 27/33 = 0.818. An excess
of the ‘neutral’ matching rate indicates shared novelties
in 1-10. In contrast, the observed matching rate for the
same pattern in the split 1-10 v 11 is 12/15 = 0.8
(observed in the columns marked in green), and the neutral
matching rate is 15/22 = 0.682, and we conclude a
case of erosion with shared old character states left over
in9-11.

Pattern validity

We combine the novelty estimate r(¢) of a pattern ¢ and its
species softness g (¢) into one validity estimate v(t),
using an advised function based on the excess formula,
and weighting the result by one half:

. n(t) + advisedy (n(t), q(t))

v(t) : >

As can be seen from Figure 2, panel 4, advised lets the
species softness g(¢) influence the novelty estimate ()
depending on the ambiguity of the latter. The closer n(¢) is
to 0.5, the more advice is taken. The underlying formulas
are

w = abs(n(t) — 0.5) + 0.5,
advisedg (n(t), q(t))
1= excessg(w - n(t) + (1 — w) - q(¢), 0.5),

where w is the weight that is given to n(#) depending on
its ambiguity.
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Pattern reliability

We call an unignored pattern unreliable, if it still
has too few supporting columns such that the observed
matching rate may be distorted easily by very few
substitutions, resulting in an incorrect validity estimate.
To formalize this notion, let 4 and o be mean and
standard deviation of the distribution of all pattern counts
of inconsistency patterns in group g; for ‘unignored’
patterns, the validity is known, and the confidence-
corrected pattern count is used. However, if a confidence-
corrected pattern count is less than the minimum column
count §, we use §, which then acts as a lower bound.
If pattern counts were distributed according to a Poisson
distribution with mean u, the standard deviation of their
distribution would be ,/iut. Let the excess of this value
with respect to the observed standard deviation, p =
excessg, (\/u, o), be the regularity of the distribution.
Regularity is close to zero if o is very large because there
are outliers, but it is close to one if the distribution is well-
behaved. The slope-smoothness 6, of the activation is set
such that 0, /\/i = 6, /ro = 6/ vo.

If there are no outliers, we set the threshold for the
pattern count rg to 4 + v - o, where vy = 5 is found
empirically, based on the idea that reliability should be
assigned to ‘significant’ counts, and ‘significant’ can be
expressed in statistical terms as the standard error of the
mean, i + vs - 0. However, if there are outliers, o can
become very large, and inflate ry. Then, we set rg to
W + vs - o, where vg is set to 1. To accommodate both
cases in a smooth way, we set

ro = pu+vs-0)+ (1 —p)(u+vs- o).

Pattern conflict and split conflict

The pattern conflict of pattern ¢, also called the
amount of evidence for shared novelties that
is ‘behind the conflict in the inconsistency pattern’, is now
given by

5 = evidence; (s (), v(t)).

Given a split G = g vg, the split conflict is the
maximum pattern conflict taken over all patterns:

conflict(g vg) := max 5,(2).

teT (g)UT (g)

As we have seen, a heuristic search for minimum split
conflict returns the best candidate for the most ancient
separation, and we can then continue our analysis viewing
the two separated sets of species as new problems that can
be tackled in the same way.

Outgroup maintenance

Once we have found a minimum-conflict split G = gvg
and we tackle g, we have a choice of two outgroup

candidates for g: the old outgroup gO, and the sister
group g. It is obvious that a far-away outgroup may
not be able to give sufficiently accurate matching rate
information. If the outgroup is very distant, matching
rates around 0.25 are observed (in the case of nucleotide
sequences), and the comparison of matching rates tends to
be useless. However, if the outgroup is too close, neutral
matching rates close to 1 are the result, and it becomes
impossible for the observed matching rate to exceed
the neutral one by a sufficient amount. Furthermore, for
neutral matching rates of, say, 0.9, sampling error can
easily diminish the observed matching rate such that no
excess is possible even though erosion took place. In
other words, outgroup comparison is not very informative
if the outgroup is too close, nor if it is too far away.
Therefore, the homogeneity of the amount of deviations
introduced into a new group g by comparing its species
to the outgroup candidate g’ is a good criterion for
outgroup selection. If the alignment under consideration
has variable columns J, the homogeneity is

pa(g, g) :=1— (maxm(i, g, J) —minm(, g, J)).
ieg ieg
Then, the outgroup of g is selected by the formula

_ )8 ifpa(g,8) = palg, g0),
0(g) = {gO otherwise.

The outgroup of g is selected in an analogous way.

3 IMPLEMENTATION

MCOPE software is written using the Perl programming
language (Wall et al., 1996). It consists of object-oriented
modules for alignment manipulation (see Chervitz ef al.,
1999), phylogeny manipulation, phylogeny exploration
and corresponding alignment visualization. The PGPLOT
plotting library (Pearson, 1997) and its Perl interface
(Glazebrook, 1997) are used for graphics, and a bitvector
implementation (Beyer, 1998) is used for handling splits.

4 RESULTS AND DISCUSSION

Intensive validation on both natural and artificial data
has been performed with good results. We have selected
natural data from two sources. We reinvestigate published
studies, and we assemble data sets from an alignment
database. We take great care that the latter are assembled
in an objective manner.

In the following, all columns with unknown nu-
cleotides/missing data (usually coded ‘?” or ‘N’ in the
alignment) are removed. If columns with gaps are not
removed upfront, the suppression of ‘runs’ of inconsis-
tencies found in a consecutive sequence of alignment
columns is necessary, since these usually indicate no valid
pattern, but deletions and sequencing gaps. Therefore, we
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Fig. 3. Left: tree published by Spears et al. (1994, redrawn; numbers
indicate bootstrap support). Right: minimum conflict tree for the
Crustacea data set. The tree on the left is implausible as far as
the monophylum 9-11 is concerned, despite high bootstrap support.
The tree on the right indicates the plausible monophyla postulated
from morphological data, and it displays the tree that follows from
the minimum-conflict splits. Their actual conflict value is indicated,
followed by the conflict of the second-best split.

identify the indices involved in runs, per default defining
‘consecutive’ such that a run is not interrupted by a single
exception. For each run, we retain only the first few
columns (i.e. the first 4), and ignore the others.

Finally, a similarity measure on the set of patterns
is employed to amplify the signal of weak patterns, by
considering ‘neighboring’ ones, as described in Fuellen
(2000). Omitting this extra step, tree topologies and
conflict values presented in the following are essentially
the same, except for the first split in Figure 4 (Bilateria
data). This deep branching cannot be recovered without
extra measures; alternatively to the consideration of
‘neighboring’ patterns, the inclusion of columns with
unknown nucleotides enables us to ‘see’ so far.

Crustacea data

The Crustacea data set published by Spears et al
(1994) has been used as our running example. The data
comprise 18S-rDNA from twelve species, one species
(Branchinecta, 12, used as the outgroup) from the Bran-
chiopoda group, and 11 species to be analyzed, from the
Thecostraca group. Following morphological data, the
Thecostraca split into Cirripedia and Ascothoracica, and
the Cirripedia split into Acrothoracida and Thoracica.
Thoracica in turn are comprised of Rhizocephala (rep-
resented by Loxothylacus) and Thoracica sensu stricto.
The tree topology from Figure 3, right, is assumed to be

1 Homo
Gnathostomata 2 Rattus
©
3 Turdus I
3
Chordata 4 Gallus 2
w -
-3 o
5 Petromyzon Y b
el a
=
(Deuterostomia) 6 Lampetra g
7 Fellaster g
Echinoidea @

8 Encope

Echinodermata

9 Ophioplocus pu——
Ophiuroidea

10 Ophiopholis —

11 Tresus nuttali —
Mactridae

12 Tresus capax

(Bilateria)

998'52/89.'61

13 Ostrea _

Ostreidae

Mollusca

14 Crassostrea

15 D
16 Dermocystidium sp

Choanoflagellida

Fig. 4. ‘Undisputed’ tree (left) and minimum conflict tree (right) for
the Bilateria data set. Labels for the minimum-conflict tree follow
conventions as in Figure 3.

correct (see Spears et al., 1994; Newman, 1987; Newman
et al., 1969).

Figure 3, left, features the tree obtained by Spears ef
al. (1994). The authors comment their tree as follows:
‘Parsimony, invariants and neighbor-joining analyses
all showed the Ascothoracida and Acrothoracica to be
sister taxa [---]. Although we certainly do not reject the
considerable molecular data supporting a close relation-
ship between the Acrothoracica and Ascothoracica, we
suggest that the Acrothoracica diverged very early from
the cirripedian lineage [---1’.

Consider again Figure 1. The character states shared be-
tween 9-11 are presumably due to erosion, since they tend
to match the outgroup, as outlined towards the end of the
section on pattern novelty. (In the partial alignment, we
calculate their ‘observed matching rate’ of 12/15 = 0.8,
while the neutral rate based on ‘neutral’ columns eval-
uates to 15/22 = 0.686. For the full-size alignment, the
observed rate is 94/116 = 0.810, and the neutral rate is
78/119 = 0.655.) Conversely, character states shared be-
tween 1-10 do not tend to match the outgroup, indicating
that these are, at least in part, shared novelties. (For the
full-size alignment, the observed rate is 19/36 = 0.528,
and the neutral is 194/236 = 0.822.) Indeed, the plausi-
ble tree featuring the Cirripedia (species 1-10) as a mono-
phylum is clearly found by minimum conflict (Figure 3,
right.) The label attached to an internal node of the mini-
mum conflict tree lists the minimum conflict value estab-
lished for this node, followed by the conflict of the second-
best split, as determined by the heuristic search. In other
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words, the split 1-10 v 11 triggers zero conflict, followed
by a split with a conflict of 15.801; this is the split 1-8, 11
v 9, 10. Furthermore, on the left of the figure, the conflict
value obtained for the split featured by the doubtful tree
(36.000) is noted next to its parsimony bootstrap value.

Support for the incorrect split 1-8 v 9-11 is triggered
by an erosion artifact, and the split has a high bootstrap
value of 86% in parsimony analysis. Let us note that high
bootstrap values (see e.g. Swofford et al., 1996) do not
exclude systematic erro—e.g. these indicate maximum
support (100%) for any data if the method just builds up a
caterpillar tree of the sequences in input order; resampling
will yield such an artifact tree every time. Since the
number of variable columns is 298 for the alignment of
species 1-11, the minimum column count for the first set
of conflict calculations is [log, 2987 = 8. The projected
alignments featuring species 1-10, 1-8 and 1-7 have
267, 137 and 75 variable columns, respectively, and the
minimum column counts are 8, 7 and 6. The calculation of
the Crustacea minimum conflict tree then continues with
an insufficient number of just 45 variable columns. The
outgroup selected for 1-10 as well as for 1-8 is species 12,
but for 1-7, species 8 triggers a smaller spread of matching
rates, and is therefore elected as outgroup.

We obtained the minimum conflict tree just discussed
ignoring those parts of the alignment featuring gaps. Using
alignment columns with gaps as well, we estimate a tree
which again strongly supports 1-10 v 11. Thereafter the
method fails, detecting several splits with zero conflict (i.e.
1-8 v 9, 10, 1-9 v 10 and 1-8, 10 v 9)—such a polytomy
indicates that gaps may be misleading for this data set.

For natural data, a comparison of our method with
standard methods is given in Table 1. The Phylip package
(Felsenstein, 1993) was used to estimate trees by max-
imum parsimony, neighbor joining and UPGMA, and
JfastDNAml (Olsen et al., 1994) was used for maximum
likelihood. Phylip defaults imply a Kimura-2-parameter
model for the distance matrix estimation, with a ratio
of transition to transversion of 2.0. fastDNAml defaults
imply equal empirical base frequencies of 0.25, a ratio
of transition to transversion type substitutions of 2.0,
input order jumbling (up to 10 times) until the same
tree is found 2 times, and guickadd rearrangement. The
Robinson—Foulds score (Robinson and Foulds, 1981, also
known as the ‘partition metric’ dT') is used to compare
trees; it is the size of the symmetric difference between
the edges of the estimated tree, and of the presumably
correct tree. Correct inference of the 1-10 v 11 split for
the Crustacea data set is reflected by a zero dT distance in
case of minimum conflict. (The phylogeny of species 1-5
is ignored because it is not known.) We also reanalyzed
the Chordata part of the tree estimated for Rodding and
Wigele (1998), see Fuellen (2000). Again, the minimum
conflict tree is more plausible, even though not all putative

Table 1. Performance of minimum conflict (MC), neighbor joining (NIJ),
UPGMA (UP), parsimony (MP) and likelihood (ML) for various kinds of
natural data

Method Published data sets
Crustacea Chordata

Data sets from RDP
Bilateria Mammalia Gnathostomata Tetrapoda

MC 0 3 0 4 8 0
NJ 2 5 2 0 8 0
UP 2 5 0 2 12 2
MP 2 5 0 0 6 0
ML 2 5 2 0 9 0

Performance is measured via the partition metric of Robinson and Foulds
(1981). Bilateria and Crustacea data sets are described in this text.
Chordata, Mammalia, Gnathostomata and Tetrapoda data sets are
described in Fuellen ez al. (2001).

correct monophyla are recovered by minimum conflict
either, yielding a d7 difference of 3 with the presumably
correct tree.

Bilateria data

We have developed a procedure for the systematic con-
struction of natural datasets where the ‘true’ tree topology
is undisputed, selecting sequences from the alignment of
the Ribosomal Database Project (RDP); Maidak er al.,
2000 database in a mechanical manner. The RDP align-
ment is guided by structural information, and the database
offers a sequence query facility (the ‘Phylogenetic Tree
Browser’) that has a crude phylogenetic organization
which we can finetune. Our procedure amounts to the
mechanic rule ‘Always take the first two taxa’, at each
level of the finetuned phylogeny. The rule helps us to
select species such that the tree is ‘almost’ undisputed,;
adding a third taxon would imply that a debate is possi-
ble on the correct classification of the three taxa. (Our
rule does not select the most ‘representative’ (i.e. least
derived) taxa; ‘representative’ is a subjective criterion
that is sacrificed in favor of a strict rule that just uses the
rather arbitrary order in the listings given to us. We note
that usually, reconstructing phylogenies becomes easier if
‘representative’ species are used for the various groups.
The species selection process is described in detail by
Fuellen, 2000.)

If we apply the strict species selection process to
Bilateria taxa in the RDP database as of July 2000, we
sample the species in the tree in Figure 4 on the left.
Moreover, this tree is hard to dispute. The minimum
conflict tree on the right recovers the phylogeny correctly,
even though resolution deteriorates for the most internal
nodes. The reason is a lack of variable columns—after
all, we ignore all the columns that include unknown
nuclotides/missing data. Minimum conflict starts off with
522 variable characters in the alignment of species 1-14,
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Table 2. Performance of minimum conflict (MC), neighbor joining (NJ), UPGMA (UP), parsimony (MP) and likelihood (ML) for various kinds of artificial

data
1500 nucleotides 1000 + 500 nucleotides 1000 + 500 nucleotides
Jukes—Cantor, tree with Jukes—Cantor, tree with Jukes—Cantor with 2 PAM but Jukes—Cantor with 2 PAM but

constant branchlength variable branchlength 1 2 3 4 1 2 3 4

4 12 1to7 1t023 very long branches anywhere very long terminal branches
MC 0.19 0.69 2.00 6.25 262 562 8.81 10.94 3.12 4.69 7.25 8.50
NJ 0 0 0 2.94 0.31 5.94 9.44 10.06 0.25 8.38 12.81 14.31
UP 1.12 0.94 4.62 5.44 494 756 10.25 10.81 5.94 10.75 13.88 15.88
MP 0 0 0 0.44 0.06 5.12 9.50 9.94 0 7.44 12.19 14.25
ML 0 0 0 0.56 0 3.12 4.69 7.00 0 2.19 4.12 6.38

Performance is measured via the partition metric of Robinson and Foulds (1981), averaged over 32 runs for each data point. Likelihood results are separated
since the method has a natural advantage in case of artificial data generated using a distinct model of sequence evolution. Branch length is measured in PAM,

percent accepted mutations per branch.

continues with 408 variable sites in the alignment of
species 1-10, and can still resolve the correct split of 1-6,
given 206 variable sites. Lists of many zero-conflict splits
result for the remaining subtrees of species 1-4, 4-8 and
9-12, featuring 135, 177 and 191 variable characters,
respectively.

For the Bilateria, neither neighbor joining nor likelihood
reconstruct the correct tree, placing Mollusca as a sister
taxon to Chordata; parsimony yields the correct tree.
Three more RDP-based data sets are described in Fuellen
et al. (2001), applying the species selection process
to gnathostomatan 18S-rDNA and mammalian as well
as tetrapodian 12S-rDNA. Comparative Robinson—Foulds
scores for these data are given in Table 1. (For the
mammalian data, MCOPE is penalized because it favors
the ‘Marsupionta’ hypothesis (conflict 14.570), but the
presumably correct split is the closest runner-up (conflict
16.260). Without erosion-corrected reliability estimation,
the ‘Marsupionta’ split was a close runner-up to the
presumably correct split, cf. Fuellen, 2000.)

Artificial data

For the generation of artificial data, we use the tool
‘Rose’ (Stoye et al., 1998) as described in Fuellen
(2000), generating trees and corresponding alignments
with approx 16 species and 1500 sites. Rose allows the
generation of sequences based on the Jukes—Cantor model
of sequence evolution (Jukes and Cantor, 1969) including
the creation of indels. In all cases, maximum likelihood
is the method that performs best in recovering the tree
topology from the alignment, and this is no surprise since
the core of the method is the estimation of a model
of sequence evolution, and this is an easy task for this
kind of input. We can show that under certain conditions,
minimum conflict performs superior to the other standard
methods, i.e. neighbor joining, UPGMA and parsimony. In
such scenarios, the set of sites is divided into two parts: a

(larger) set of sites that evolve very fast in certain branches
(causing the artifacts that mislead standard methods), and
a set of sites that follow artificial evolution with equal
branchlengths (causing shared novelties to appear and be
sustained.) In fact, such a division of sites renders the
artificial evolution more resemblant to the scenario known
from morphological systematics: among many misleading
characters, some well-supported synapomorphies can then
be found.

Comparative results are presented in Table 2. Under
conditions of equal branch length as well as variable
branch length with no very long branches, minimum
conflict performs inferior, cf. Table 2, columns 1-4.
However, minimum conflict catches up if 1000 sites
are evolved using a tree with between 2 and 4 very
long branches featuring 128% accepted mutations (PAM)
instead of 2 PAM in the other branches, and another
500 sites evolve at a constant rate of 2 PAM per branch
(cf. Table 2, columns 6-8. Note that the long branches
are located anywhere in the tree.) Minimum conflict is
superior if there are two or more very long branches that
are all terminal branches, cf. columns 10-12. If there is
just one long branch, terminal or not, minimum conflict
performs inferior (columns 5 and 9).

Conclusions

Reviewing weaknesses and strengths of the minimum
conflict algorithm, we find two major situations where
the method may be misled. (1) If the ancestor of a group
of species gave rise to one fast-evolving and one slowly-
evolving branch, and the split under investigation tears the
slowly evolving monophylum apart, the resulting pattern
will be caused by the shared novelties of the slowly
evolving monophylum, as well as shared old character
states due to erosion, and it is possible that the latter
will dominate the former. Then, erosion is flagged and
no conflict is noted even though a monophyletic group is
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torn apart. (2) Patterns may rnot be due to shared novelties,
but instead due to convergences. Then, no erosion is
flagged and conflict is noted even though the split may
separate two monophyla. In both cases, the implication is
that even if we can always detect erosion correctly, the
estimated tree may still be incorrect. Another focus of
future research is to improve the handling of gaps and of
putative polytomies.

Nevertheless, minimum conflict phylogeny estimation
performs well in practice. It is fast due to its divide-
and-conquer approach, and many species can be handled
simultaneously; no search through the space of tree
topologies is necessary. Moreover, minimum conflict is
transparent in the following way: for each decision taken,
it clearly identifies the sites that feature putative shared
novelties in conflict with the assumption of monophyly
of a particular set of species, and it identifies sites
with putative shared old character states. This allows the
researcher to evaluate these decisions in terms of his or her
own expertise.
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